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FOREWORD

The Lewis Research Center has a strong interest in nuclear rocket propulsion and

provides active support of the graphite reactor program in such nonnuclear areas

as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer,

nozzle cooling, nozzle design, pumps, turbines, and startup and control problems.

A parallel effort has also been expended to evaluate the engineering feasibility of a

nuclear rocket reactor using tungsten-matrix fuel elements and water as the mod-

erator. Both of these efforts have resulted in significant contributions to nuclear-

rocket technology.

Many successful static firings of nuclear rockets have been made with graphite-core

reactors. Sufficient information has also been accumulated to permit a reasonable

Judgment as to the feasibility of the tungsten water-moderated reactor concept. We

therefore consider that this technoIogy conference-on the nuclear rocket work that

has been sponsored by the Lewis Research Center is timely. The conference has

been prepared by NASA personnel, but the information presented includes substan-

tial contributions from both NASA and AEC contractors. The conference excludes

from consideration the many possible mission requirements for nuclear rockets.

Also excluded is the direct comparison of nuclear rocket types with each other or

with other modes of propulsion.

The graphite reactor support work presented on the first day of the conference was

partly inspired through a close cooperative effort between the Cleveland extension

of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the

Lewis Research Center. Much of this effortwas supervised by Mr. John C. Sanders,

chairman for the first day of the conference, and by Mr. Hugh M. Henneberry.

The tungsten water-moderatedreactor concept was initiated at Lewis by Mr. Frank

E. Rom and his coworkers. The supervision of the recent engineering studies has

been shared by Mr. Samuel J. Kaufman, chairman for the second day of the confer-

ence, and Mr. Roy V. Humble. Dr. John C. Eward served as general chairman

for the conference.

Abe Silverstein

Director

k_ a.. k.. L-

iii

Precedingpageblank

\

i_





m-

i

J

!
!
|

!
!

--zq

CONTENiS

GRAPHITE NUCLEAR ROCKET

INTRODUCTION ...................................

I. STATUS OF GRAPHITE-NUCLEAR-ROCKET PROGRAM

Milton Klein ................................

H. PROPELLANT FLOW SYSTEM COMPONENTS

Melvin J. Hartmann, Donald J. Connolley, Sidney C. Huntley,

Richard A. Rudey, and Irving M. Kzxp ..................

]]I. HEAT TRANSFER AND FLUID MECHANICS

Robert W. Graham, Rudolph A. Duscha, William L. Jones,

and George E. Turney ...........................

IV. STARTUP DYNAMICS AND CONTROL

Herbert J. Heppler, Jr., Benjamin H. Cohnery, James J. Watt,

and Vernon D. Gebben ...........................

Page

1

TUNGSTEN WATER-MODERATED NUCLEAR ROCKET

INTRODUCTION ................................... 155

V. A REFERENCE DESIGN FOR THE TUNGSTEN WATER-MODERATED

NUCLEAR ROCKET
Morton H. Krasner ............................. 159 _/

VI. REACTOR PHYSICS

Donald Bogart, Edward Lantz, Wendell Mayo, and Paul G. Klann .... 175 /

VII. FUEL ELEMENTS AND FUEL-ELEMENT MATERIALS

Armin F. Lietzke, Neal T. Saunders, Gordon K. Watson,

Richard E. Gluyas, and Jack G. Slaby ................... 217/

Vm. FLUID SYSTEMS AND CONTROL

John V. Miller, Harry W. Davison, James R. Mihaloew, /
Walter A. Paulson, and Guy H. Ribble, Jr. 263/-

BIBLIOGRAPHY ................................... 301

Y

Preceding pageblank





==

GRAPHITE NUCLEAR ROCKET
" --jL -- - _-- -

INTRODUCTION

The U.S. nucIear rocket program is directed by Mr. Harry B. Finger tl_ough his

joint AEC-NA_ Space Nuclear Propulsion Office. He utilizes three field offices also

called S_TPO in his activities.

SNPO, Albuquerque, maintains liaison with the effort performed at the Los Alamos

laboratory. The principal function of the Nevada SNPO is to manage the Nuclear Rocket

Development Station commonly referred to as NRDS. SNPO, Cleveland, headed by Mr.

Robert W. Schroeder, is responsible for the NERVA development including the engine and

its applications. The prime contractor for NERVA is the Aerojet-C, eneral Corporation,

__ and Westinghouse Astronuclear Laboratory (WANL) serves as the principal subcontractor.

There are also many smaller contracts supporting the program.

The SNPO-Cleveland responsibility includes coordination of the NERVA research and

development effort of all the pertinent contractors and government laboratories. In par-

ticular, the Lewis Research Center contributes to the program by (a) initiatinglong-term

nuclear rocket programs that go beyond the immediate requirements of NERVA, and

(b) furnishing extensive support to NERVA in nonnuclear areas such as cryogenics, two-

phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle de-

sign, pumps, turbines, and startup and control problems. This information is presented

in papers H to IV as follows:

PROPELLANT FLOW SYSTEM COMPONENTS - Neutron and gamma radiation inten-

sities from the reactor cause propellant heating and associated cavitation of liquid hydro-

gen in the pump. The compromises between tank pressure and pump design to alleviate

this difficultyhave been studied. Pump performance problems during the "boot-strap"

startup are also included.

HEAT TRANSFER AND FLUID MECHANICS - The steady-state cooling of the nuclear

rocket exhaust nozzle for full-power operation is discussed. Separate effects on both the

gas and coolant sides of the wall appreciably reduce the severity of the heating load.

Even though severe thermal stress concentrations are estimated, itappears that a well-

designed regeneratively cooled system will enable the use of conventional stainless steel

materials. The presentation is concluded with a discussion of the gaseous and two-phase

heat transfer and pressure drops encountered during the transient startup period.

L L L. L_
L_



STARTUP DYNAMICS AND CONTROL - The highlights of experimental and analytical

nuclear rocket system dynamics, primarily those associated with an unfueled reactor flow

system startup, are presented. Effects of boiling hydrogen two-phase flow and pump stall

on the "boot-strap" operation are discussed. Status of the application of fluidic devices

to control systems is reported.

Mr. Milton Klein, Deputy Manager of the AEC-NASA Space Nuclear Propulsion Of_

rice, Washington, D.C., in the first paper, reviews in detail the overall nuclear rocket

program and presents the history, recent successes, programs, and goals of the

graphite-core nuclear rocket.

..
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I.STATUSOF GRAPHITE-NUCLEAR-ROCKETPROGRAM

..... Mi-lto_ _Jein ............

AEC-NASA Space Nuclear Propulsion Office

INTRODUCTION

The nuclear-rocket program is providing propulsion system technology, which will

add significantlyto thiscountry'sabilityto perform the space missions of the futureand

enable us to accomplish the desired missions withoutbeing limited by propulsion consid-

erations. This program covers a broad range of technologies,includingnuclear reactors,

rocket-engine components, and engine systems, and involvesNASA centersl AEC labora-

tories,universities,and industrialcontractors. The work described in thisreport is

thatportion of the nuclear-rocket program performed by the NASA Lewis Research

Center and itscontractors. That work not only has contributeddirectlyto the goals of the

nuclear-rocket program but also constitutesan important contributionto the totalfund of

technology in advanced materials, in heat transfer, in fluidsystems, and in controls.

To provide information on the complete nuclear-rocket program, itwas suggested

thata paper summarizing the activitiesnot included in the followingLewis reports be pre-

pared. Accordingly, thispaper has been written to provide, first,a perspective of the

overallnuclear-rocket program and, second, a detailedreview of the activitiesconcerned

with graphite solid-core reactors and engines.

NUCLEAR-ROCKETPROGRAMDESCRIPTION

The several parts of the nuclear-rocket program are as foIlows:

(1) Graphite solid-core reactors and engines

(a) Kiwi/_NERVA - Los Alamos/Aerojet-Westinghouse

(b) NERVA engine technology - Aerojet and Westinghouse

(c) Supporting research and technology - Lewis

(d) Phoebus - Los Alamos

(e) Proposed NERVA engine development - Aerojet and Westinghouse

(2) Other concepts

(a) Tungsten solid-core reactors - Argonne and Lewis

(b) Cavity reactor

%



(3) Advanced nonreactor component and engine systems technology - Lewis

(4) Stage technology

(5) Application studies

The primary effort in the program has been and continues to be that related to the graphite

solid-core reactors and engines utilizing such reactors. This work includes the Kiwi and

NERVA reactor activities of Los Alamos and Aerojet-Westinghouse, respectively, NERVA

engine technology, Phoebus reactor work at Los Alamos, supporting research and tech-

nology at Lewis, and, proposed for initiation next year, NERVA engine development.

The other solid-core reactor effort has been related to tungsten reactors, conducted

at Lewis and at the Argonne National Laboratory. This work has had the objective of ex-

amining the feasibility and performance potential of tungsten reactors for nuclear rockets.

Since performance can be no better than the capability of the fuel elements, the work has

been largely fuel-element and materials oriented. The Lewis work is focused on a water-

moderated-reactor system and that at Argonne on a fast-reactor system. This work has

shown that such reactors are feasible and that they appear to have a performance poten-

tial in terms of specific impulse comparable with that of graphite reactors. On the basis

of the work done so far, tungsten reactors appear to offer the possibility of longer-duration

operation. However, the primary missions toward which the nuclear-rocket program is

now aimed do not require operating durations longer than those attainable with graphite.

The present plans for tungsten systems, therefore, are to conclude the work now under-

way and not to proceed toward establishing a complete technology base. Because of bud-

getary constraints, the work is being terminated somewhat earlier than would be desirable

for technology purposes. The Lewis work on tungsten systems is described in papers V

to VM.

A temperature limit is imposed in solid-core systems by the structural strength of

the fuel-bearing material. Cavity reactors have been proposed to exceed that limit.

Their theoretical potential performance ranges from the order of 1200 seconds specific

impulse for dust bed concepts to perhaps 2500 to 3000 seconds for gaseous-core concepts,

with liquid-core systems having a potential of the order of 1500 to 1600 seconds. These

values compare with the upper limit of approximately 1000 seconds for solid-core systems.

The problems of attaining the theoretical specific impulse of these cavity-reactor

concepts are severe. At this stage it is not known that such systems are feasible or what

their realistic performance potential might be. The theoretical performance, however,

is sufficiently great that some work is warranted. The cavity-reactor effort which we

sponsor examines primarily the fundamental problems of fluid mechanics and heat trans-

fer associated with such systems. Some of that work is being done at Lewis, but there

was not time on the Lewis agenda to provide adequate coverage of the subject.

As a companion to the reactor work aimed at the long-term goal of ever higher per-

formance, there is work, primarily at Lewis, to advance the technology of nonreactor
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components that will be needed if such performance is to be achieved. Lewis is depended

on heavily to pave the way for these advanced systems.

At present, relatively little effort is being devoted to the area of stage technology.

However, with the success of the engine work, greater emphasis on stage technology is

called for. Particularly important is an examination of the effects of radiation heating

on the propellant; basic work on that subject is being done at Lewis. Long-term cryo-

genic storage is another of the importan_ problemai:eas. -

The final category of work iisied is ti_at of application Studies. In the nuclear-rocket

program, a limited number of such studies is perfo--rmed in order to provide information

on performance trade-offs and to guide -our eff0rts- generally_-_articuiariysi_ificant ....

during the past few years has been the_rk-done-to _efine_e:e_ect of engine thrust on

performance for the various missions toward which our program is directed.

Out of these studies arose a verylnt-e_est{ng_prospect - : tl_e-poss{biiity that an engine

designed for a thrust level of 200 000 to 250 000 pounds, used singly or in clusters, could

perform all the principal missions for which nuclear rockets appear advantageous. This

engine size is not necessarily optimumJ_every Case, but, in'hose Cases inwhich it is not
-- °

optimum, the performance penalty isrelatively small. The-development of Suchan engine ....

would therefore not only be "cost-effective," but would also provide a means for gaining

a maximum amount of experience on a single engine design. This concept of a versatile

engine has been extended to the concept of a propulsion module compose d of that engine

and the associated propellant tankage: as shown in figure I-1. The propellant tank is

sized at 33 feet in diameter to make it compatible with the Saturn V as a third stage. The

propellant loading can be changed by shortening the tank or by adding additional propellant

tankage. This propulsion module concept, which was proposed by Marshall Space Flight

Center, is of significance in our present technology effort as well as in our future planning.

GRAPHITE SOLID-CORE REACTORS AND ENGINES

Now let us return to the program on graphite solid-core reactors and engines. Fig-

ure I-2 shows a drawing of the NERVA nuclear-rocket engine. The principal components

of the engine are the reactor, with its core and reflector regions; the turbopump; the jet

nozzle, with a bleed port to carry hoe hydrogen to the turbineiand thecontrol system.:-

At the present time we are in a technology program. In general, our objective is to

establish the technology for graphite nuclear-rocket engines so that it will be possible to

proceed with confidence into the development of any required engines.

As an end technology objective in itself and to unify the many aspects of the nuclear-

rocket program, engine system investigations are being conducted with the following

specific objectives:



(1) Determination of allowable ranges of startup parameters

(2) Exploration of engine performance characteristics, limits, and interactions

(3) Evaluation of control concepts

The NERVA technology investigations utilize a 50 000-pound-thrust engine system

(1000 MW) rated at a specific impulse of approximately 760 seconds.

In order to carry out this engine-system activity, it is obviously necessary to have

suitable components. The principal and crucial component is, of course, the reactor. But,

in addition to the reactor work, it has been necessary to provide the nonreactor compo-

nents required to conduct the engine-system investigations. The principal activities in

this regard are the development of a suitable nozzle with the hot bleed port referred to

earlier, a suitable liquid-hydrogen turbopump, and a suitable control system. At the

same time as these components are being developed for the system investigations, it is

also necessary to keep in mind the need for establishing the technology of such compo-

nents as required for future engine development.

For all these components, the basic work has been done at Lewis. Hydrogen heat-

transfer research has been important in the nozzle efforts. Lewis is engaged in examin-

ing the radiation effects on materials and components. Radiation is, of course, the spe-

cial environment associated with nuclear rockets; apart from those effects, the technology

of the nonreactor components is directly related to that of chemical-rocket systems. All

these technology efforts form the basis for the development of the 200 000- to 250 000-

pound-thrust NERVA engine that has been defined for future mission use.

Graphite-Reactor Technology

Only a short time ago, 23 months to be exact, a nuclear-rocket reactor had not

achieved a measurable time of operation at design power and temperature. Late in 1962

in the first test of the chosen graphite-reactor design, the Kiwi B-4A, major structural

damage of the reactor occurred. To be sure, there had been significant accomplishments

and progress by that time at Los Alamos. A graphite-uranium fuel element had been de-

signed that withstood the thermal stresses and, to a limited extent, withstood corrosion

by the hydrogen propellant. Design methods had been developed. Startflp of the reactor

with liquid hydrogen fed to the system had been demonstrated. (The matter of startup on

liquid hydrogen had been a worry because of the potential two-phase-flow instabilities.

However, by careful preliminary analysis and experiment, this particular problem had

been well worked out, so that the problem did not materialize. ) In addition, a reactor-

control system had been developed that was capable of controlling this high-power density

machine in a responsive and stable fashion and doing so automatically.

6
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But a suitable structural design had yet to be demonstrated. Until that particular

problem was solved, complete reactor op-er;itibn obviously could not be demonstrated nor

was it possible to examine fully the fuel-element or the control-system behavior or the

other aspects of reactor Operation. : =-=-_ ..... : ......

For the year and a half after the 1962 test, further reactor testing was deferred in

favor of an increased examination of individual components, subsystem testing, and cold-

flow testing. By May 1964 there was readiness for another test. That May 1964 Kiwi

test, less than 2 years ago, achieved near_y full-power operation for about 1 minute. The

contrast between that test and the more recent tests is indeed remarkable. In the May

1964 test, operation was cut short after_about i minute because of a hydrogen fire caused

by a leak in the nozzle. NeverthelesS, t_:a_q minute 0t operation was extremely grati-

fying because the reactor operation during that period was excellent and the condition of

the reactor after the test was exceil_nt-::':_iie thetest was of relatively short duration,

it had proved the suital_iiity of the_sfructurai des:i'gn:_that had evoive__ As a result, at this

conference, continuing concrete_ac-comp_shmen(c'_an-_be discusse_d.

Since the ill-fated Kiwi-B4A test in November 1962, six reactors have been tested

at power, as shown in figure I-3. In alI these cases, the reactor operation was good. The

reactor has proved to be a reliable and l_x;edictable component. It has proved to have a

wide range of stable operation. TheSe_re-actors_have-accumulated a total operating time

of approximately 4 hours of which approximately 1 hour and 10 minutes have been at full

power and full temperature, which, at altitude conditions, is equivalent to a thrust level

of approximately 55 O00 pounds at a _S_ifi-c impuise of approximately 760 seconds for an

assumed area ratio nozzle of 40 or nearly 800 seconds for an assumed area ratio nozzle

of 100. The longest oper_:tiou of a sin_glereactor was tha t on the breadboard engine, the
NTtX/EST, the testing of which w_s-_completed last month. On this system, 110 minutes

of power operation were accumu_at_ o_ :which approximately 28 minutes were at the full-

power condition.

With the solution of the structuraldeesign problems demonstrated through all these

tests, the major technicaI-effort- is _ concentrated on the objective of achieving long-

duration reactor operation. Our goal is to provide a capability of aleut 60 minutes of

full-power operation on a single reactor. This time compares with a mission operating
: = - ..........

duration requirement for a single engine of 15 to 20 minutes in some cases and 30 to 40

minutes In others. The 60-minute'goa] was chosen to provide margin as well as to pro-

vide more economy In development, that is, to permit more tests on a single reactor.

The duration capability of the reactor is limited by the corrosion of graphite by the

hydrogen propellant. This corrosion takes place in several areas of the reactor. Fig-

ure I-4 is a cross-sectional sketch of a fuel-element cluster. Each cluster contains six

fuel elements surrounding an unfueleci central graphite element. Through this central

element passes a metal support rod that is attached to a graphite support block at the hot



endof the cluster. Theloadof the fuel elements and the pressure load are carried to this

graphite support block at the hot end and in turn to the metal support rod that is attached

at the cold end to a metal support plate. There are approximately 250 clusters in a core,

all hung from the cold end, as shown in figure I-5. Each fuel element is made of graphite

containing uranium and is hexagonal in shape. Its dimensions are 3/4 inch across flats

and approximately 52 inches long.

The graphite is subject to attack by hydrogen wherever it exists at high temperature.

The principal areas of attack are the fuel element and the periphery of the reactor core,

where hydrogen is used to establish a proper pressure relation for structural purposes

and to provide cooling to certain parts. This corrosion attack is minimized by coating

certain surfaces with a corrosion-resistant material, and design features are employed

to minimize flows of hydrogen to other graphite surfaces.

Since the fuel element is the keystone of the system, it is the principal area of cor-

rosion concern. As illustrated in figure I-6, it is subject to varying kinds of attack - in

the coolant passages, on the external surfaces at the hot end, and potentially, on the exter-

nal surfaces between elements because of bypass leakage. The coolant passages and the

exterior surfaces at the hot end are coated with niobium carbide, as are the cluster sup-

port blocks. It h.as not thus far been necessary to coat the exterior surfaces of the ele-

ment above the hot end, since flows in that region may be sufficiently low to avoid serious

attack there.

Through extensive laboratory work, great progress has been made in minimizing

fuel-element corrosion. Figure I-7 shows the improvement in fuel-element performance

over the past several years. The vertical bars represent demonstrated fuel-element

lifetime for the years 1964 and 1965 and projected for 1966. For each year, two mea-

sures of performance are shown. To the left are data from reactor tests; to the right

are data from electrically heated furnace tests. Furnace testing is employed as a rea-

sonable corrosion simulation of reactor performance. Test data from electrically heated

experiments are used for purposes of fuel-element development as well as for quality con-

trol. As might be expected, performance in electrically heated tests is always ahead of

the performance in the reactor because of the lag in time between development of an im-

proved element and the test of that element in a reactor.

In 1964, a reactor duration of about 10_ minutes was achieved at slightly
i

under

4400 ° R fuel temperature, which gives a chamber temperature of about 4100 ° R. Per-

formance has been increased to the point that there has already been achieved, in a 1966

reactor test, a duration of about 30 minutes at this temperature, and our goal for the next

year or so is to operate a single reactor for about 60 minutes. Furnace tests in 1964

showed performance of about 25 minutes at a slightly higher temperature. We have now,

in a few specimens, achieved in furnace tests close to 2 hours at 4400 ° R.



Recently, a new coating technique was developed that gives promise of extending the

corrosion resistance of the element substantially. With this technique, a fuel-element

specimen was tested for nearly 2 hours at a fuel-element exit temperature of 4800 ° R.

This temperature would provide a specific inpuise of more than 850 seconds for an

assumed area rati_ nozzle of 100. Therefore, it appears clearly possible to have a fuel

element that substantially exceeds the goal of 60 minutes of operation at a chamber tem-

perature of 4100 ° R and even 60 minutes at substantially higher temperatures.

While work is proceeding toward improvement of the corrosion resistance of the reac-

tor, efforts are also underway toward a higher power reactor. This work is being done by

Los Alamos in what is called the Phoebus program. Table I-1 compares certain features

of the Kiwi and NRX (the NERVA technology reactors ) that have been tested to date and

the 5000-megawatt reactor called Phoebus 2. The Phoebus 1 testing program is a step-

ping stone toward the Phoebus 2 that uses hardware the same size as the Kiwi and NRX

reactors tested to date. The Kiwi and NRX reactorshave a diameter of 35 inches. The

Phoebus 2 reactor will have a diameter of approximately 55 inches. The design power of

the Kiwi and NRX is 1120 megawatts and of the Phoebus 2, approximately 5000 megawatts.

The hydrogen flow rate will gofrom 70 to 285 pounds per second, andan increase inthe exit

gas temperature from 4100 ° R to between 4500 ° and 5000 ° R is desired. The Phoebus 2

reactor is similar to the reactors tested todate except that they contain more fuel ele-

ments. The fuel elements are of nearly identical design, but in order to provide more

power, a larger number of elements are required, leading to the increase in reactor

diameter.

To test the phoebus reactor, it is necessary to have in the test facility a suitable

liquid-hydrogen feed system. To provide such a pumping system is a development pro-

gram in itself. This work has been going on at Rocketdyne and employs a parallel pump-

ing system, illustrated in figure I-8, which is an outgrowth of the pump that was devel-

oped for reactor testing in the Kiwi program. It is a four-stage axial-flow pump driven

by a five-stage turbine. Two such pumps will be operated in parallel for testing the large

reactor. Development testing of this type of system in the parallel pumping mode has

been performed, showing stable operation. Primary effort at this time is the develop-

ment testing of the improved pump in a single pump mode.

Engine System Technology

With the success of the reactor program, increased attention has been devoted to ob-

taining an understanding of the complete nuclear-rocket-engine system. In figure I-9 are

-- shown the major elements of the program. Underlying this work is an intensive program

_. of system analysis, both steady state and dynamic. But even sovhisticated analysis must

_- • 9
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be supplemented by experiments to verify the analysis and fill voids in our understanding.

The experimental work includes an examination of the behavior of the individual compo-

nents: reactor, turbopump, nozzle, and control system. It employs cold-flow systems,

which involve the operation together of all the components as a system except that a non-

power reactor is used. These cold-flow systems have been useful in examining the first

few seconds of engine operation. The work at Lewis has been particularly important in

providing a thorough understanding of the engine system through the cold-flow engine ex-

periments conducted at the Plum Brook Station. The Lewis work was supplemented by

cold-flow testing at Aerojet, all of which was preliminary to power testing of the engine

system. The first power test of the engine system employed a breadboard engine called

EST for Engine System Test. The testing of EST just completed marks the high point of

our work to date. The next phase of engine-system-technology investigations employs a

system in a down-firing position in a test stand that provides altitude simulation. It will

also be more nearly configured to a flight system than the breadboard engine.

Now let us return to the recent test program on the breadboard engine, the so-called

EST program. Those who have seen photographs of that breadboard engine at the test

cell may wonder what the difference is between it and the previous reactor tests. The

next two figures indicate the difference. Figure I-10 is a drawing showing the means for

supplying hydrogen in a reactor test. As shown in the schematic drawing, in such a test,

the reactor, placed on its test car and plugged into the test-cell wall, is fed hydrogen

from the Dewar by use of a turbopump located in the facility. The turbine is driven by a

facility supply of high-pressure gaseous hydrogen. The hydrogen flows through the tubes

forming the nozzle wall, through the reflector, and then into the reactor core and out the

jet nozzle. In the breadboard engine, as shown in figure 1-11, the facility turbopump

driven by a separate supply of gaseous hydrogen is bypassed, as indicated by the dashed

lines. Instead, an engine-type turbopump is located on the test car and the turbine of that

turbopump is driven by hydrogen bled from the nozzle chamber that is diluted with cold

hydrogen gas to a temperature of approximately 1200 ° R. The breadboard engine there-

fore involves all the principal components of a flight engine, the same flows and there-

fore essentially the same system interactions as a flight engine.

Figure 1-12 shows the breadboard engine plugged in at the test cell at the Nuclear

Rocket Development Station in Nevada. The reactor is located on the shed that houses var-

ious reactor-control components. To the left of this shed is another shielded enclosure in

which are located the turbopump, the turbine-power-control valve, and related components.

Those components are not present in a reactor test. The enclosure for those components

was shielded so that it was unnecessary to qualify them completely for radiation resis-

tance. Figure 1-13 is a view of the interior of the enclosure showing the turbopump and

the turbine-power-control valve. The angle of this photograph makes the space look rela-

tively crowded. Actually, there was plenty of room to work around the components.

10
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The objectives of the breadboard engine test program were

(1) To demonstrate the hot-bleed-cycle nuclear-rocket engine

(2) To demonstrate bootstrap startups to power region

(3) To provide data on

(a) Steady-state and transient operation of the system

(b) Component interactions

(c) Alternate control modes

Several new components were being tested in the system for the first time. The noz-

zle shown in figure I-14 was the same as that used in previous NRX reactor tests except

for the addition of a hot bleed port. This bleed port is a crucial element of the system,

since it must duct hydrogen at temperatures in excess of 4000 ° R from the chamber. The

nozzle is made of stainless-steel U-channels brazed into slots in a forged stainless-steel

pressure shell.

The turbopump in the engine system, shown in figure 1-15, consists of a centrifugal

pump driven by a two-stage turbine. It delivers hydrogen at a flow rate in excess of

70 pounds per second and has hydrogen cooled and lubricated bearings.

An integrated engine-control system, shown schematically in figure 1-16, was used

for the first time. As previously indicated, an important objective of the breadboard-

engine test was the exploration of various control modes. Engine control is achieved

through the regulation of two components. One is the reactor control drum, 12 of which

are located in the reflector region around the reactor core. Those drums control neutron

power that, in turn, affects temperature and pressure. The other control Component is

the valve that controls the flow of drive gas to the turbine and, thereby, affects the hydro-

gen pumping rate.

Several control loops are available to regulate the control drum and valve positions.

Neutron power can be sensed and used to control the reactor control drums. Chamber

temperature can be sensed and used to control the reactor control drums. Chamber pres-

sure can be sensed and used to control the turbine-power-control valve to control hydro-

gen flow. Closed-loop or open-Ioop control can also be used, as well as various com- ....

binations of these loops. Experimental investigations of these control variations were

conducted in the breadboard-engine-test program.

After cold-flow tests on the breadboard engine to check out the system as well as es-

tablish certain base point comparisons with previous cold-flow testing, a series of power

tests was conducted, as given in table I-2. In all, there were 10 startups of the system.

During these startups, pressure in the propellant Dewar and temperature of the reflector

were varied. In the several tests, a variety of control modes was tried, and numerous

experiments were conducted to determine the system response to pressure, temperature,

and power transients. In all, 110 minutes of power operation were accumulated, includ-

ing about 28 minutes at full power.

11



One aspect of the testing program was aimed at exploring the bootstrap start char-

acteristics of the system. In a bootstrap start, the engine uses the energy available from

the pressure in the propellant tank and reactor heat to start. There is no external source

of starting energy. Bootstrap starts have been conducted in cold-flow tests at Lewis and

at Aerojet in Sacramento, but those tests were limited in that they obviously could not

carry the system into the power region. They showed that such starts were feasible but

more data were needed for the extension from the first few seconds into power operation.

In figure I-17, cold-flow data, which are represented by dashed lines labeled CFDTS

are compared with the breadboard engine data, which are represented by the solid lines.

A satisfactory start would require the pump speed to increase to 2000 to 3000 rpm in a

few seconds. There are comparisons for propellant tank pressures at 70, at 45 and 50,

and at 35 pounds per square inch absolute. For 70 and 45 pounds per square inch abso-

lute, the bootstrap start is satisfactory in bringing the turbopump to speed. For a pro-

pellant tank pressure of 35 pounds per square inch absolute, the startup is marginal at

best. All these tests were at an atmospheric exhaust pressure of 12.7 pounds per square

inch absolute. The breadboard-engine-test data are in good agreement with the cold-flow

data. There are some differences, but they do not seem to be of major significance at

this point.

Another aspect of the breadboard EST program was to explore operation of the engine

system over the entire operating range. Figure I-18 is an engine map plotting nozzle

chamber temperature, which is related to specific impulse, against the nozzle chamber

pressure. The normal operating line is shown. The region of principal interest is

bounded within the lines shown. The structural limit is related to the temperature capa-

bility of the fuel-cluster metal support rod. That limit and the fuel-material temperature

limit are related to natural characteristics. The other bounds shown are chosen, in some

respects arbitrarily, to limit the range of interest. If it were necessary to operate to the

lower right, it would be possible to define a system to do so. Our objective then was to

examine operation within the bounds shown.

Figure 1-19 shows in a simplified, idealized way where the breadboard engine was

operated. Region 1 is around the design point; a number of experiments were conducted

there. Region 2 is an intermediate temperature and power region, and a number of tran-

sient response and control system experiments were performed in that region. Region 3

is the bootstrap start region and, as mentioned earlier, a number of experiments were

conducted there. In addition, the limits of the system in terms of temperature and pres-

sure were explored. The engine was mapped across from the operating point by throt-

tling down on flow and power until a predetermined point approaching the structural tem-

perature limit was reached. As expected, it was possible to throttle the engine at full

specific impulse over a range of chamber pressures from about 200 pounds per square

inch absolute to the full operating pressure of about 550 pounds per square inch absolute.

12
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Similarly, the engine was mapped across the3400 ° R line and the 2500 ° R line. Fig-

ure 1-19 also shows operations with fixed turbine-power-control-valve settings for ramp-
ing power down from one level to another.

As previously indicated, in the course of the test series a number of controls exper-

iments were performed. For example, the s-ystem was operated with the neutron power

loop eliminated. It was operated on pressure control alone. It was operated open loop

with fixed or programed turbine-power-control-valve-positions and reactor-control-

drum positions. A startup experiment was performed with the control drums fixed,

power rising with the increasing bootstrap-start flow of hydrogen. The response of the

control system to various temperature, pressure, andflow transients was examined.

Throughout the test, the system was generally stable.

The bootstrap start phase of operation took about i0 to 15 seconds, and then tempera-

ture was raised at the rate of more than 100 ° R per second. Thus, about 50 seconds were

involved in going from startup to design point, although in these tests there were calibra-

tion holds on the way to full power that lengthened the time.

In summary, the breadboard-engine-system test program showed that

(1) The hot-bleed-cycle system operation is stable and flexible over a wide range.

(2) The system can be throttled at full specific impulse.

(3) Several start techniques are feasible.

(4) Alternate control modes are available.

(5) Multiple starts and many tests are possible from one hardware assembly.

A preliminary assessment of the behavior of the major-engine components is shown in

table I-3. This assessment is preliminary because post-test examination has only just be-

gun on the system. The behavior of the nozzle and the bleed port was quite satisfactory.

They have been inspected with remote television and appear to be in good shape. Figure

1-20 shows the bleed port looking into the turbine-inlet line, taken between tests. The

turbopump and the turbine-power-control valve both operated satisfactorily. There was ...............

difficulty with only one significant component- the turbine-power-control-valve actuator.

It exhibited excessive wear after the first day of power testing and was replaced. The re-

placement also exhibited wear and that one was replaced. An improved model was then

installed and worked well through the remainder of the series. The reactor performance

was clearly satisfactory. The reactor is now being inspected in the disassembly process.

Significantcorrosion was expected to be in evidence in the fuelelements and is being ob-

served. The reactor controldrums and theiractuators operated satisfactorily.

With the completion of the breadboard-engine program, attentionis being turned to

the next phase of the engine-system program, the buildingof a ground-experimental

engine, calledXE, to be testedin a down-firing positionintoan altitudeexhaust system.

An exploded view of the ground-experimental engine is shown in figure1-21. Shown are

the reactor, the nozzle, the turbopump assembly and linesin the upper thruststructure,

13
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andthe test stand adapter, which is fixed to the test stand. The engine is divided into two

modular parts. It is so designed that the upper thrust structure can be replaced remotely

in case it becomes necessary to do so during the test program. This experimental engine

will be tested in Engine Test Stand No. 1, nearing completion at the Nuclear Rocket De-

velopment Station. A recent photograph is shown in figure 1-22. A crucial part of this

facility is the exhaust duct that fits into the chamber below the test pad level. That ex-

haust duct is essentially a large, cooled nozzte. The elbow of the duct is shown in fig-

ure 1-23 to give an idea of its size. Attached to each end of the elbow are straight sec-

tions approximately 40 to 50 feet long.

The objectives in the ground-experimental (XE) program are to provide data on

(1) Systems interaction and control at altitude conditions

(2) Systems interaction and control with a system configured closely to flight system

(3) System limits

(4) Cooldown and restart characteristics

(5) Malfunction studies

(6) Facility operations throughout the full operating range

(7) Remote maintenance

A very important aspect of the experimental engine program is to gain experience in the

operation of the complex engine - test-stand system.

Finally, experience is to be gained with remote maintenance techniques. It is im-

portant to have the capability of replacing a component during a test series in case it

should fail. The replacement module approach in the XE system is a step toward this

capability. In the XE program, this approach will be studied.

For most such operations and for routine disassembly, a shielded maintenance-

assembly-disassembly building is used. Such a facility for engines is nearing completion

at the Nuclear Rocket Development Station. A photograph of the interior of the main

shielded bay is shown in figure 1-24. Large remotely operated manipulators are employed

in the operations.

NERVAEngine Development

With the testing of the XE engine, completion of the basic technology phase of the

graphite-reactor-engine program will be approached. The tests to be performed in the

near future are indicated at the bottom oi figure 1-25. Additional NERVA technology reac-

tor experiments are planned this year: the NRX-A5 and the NRX-A6. In addition, the

Phoebus reactor program is underway with an intermediate-power test scheduled in the

summer of 1966 leading to high-power reactor testing beginning late in 1967 preceded by

a cold-flow test in the spring of 1967. The XE ground-experimental engine program will

14
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begin in 1967 and continue into 1968.

The success of the program has led to the establishment of plans to proceed with the

development of the specific NERVA engine required for future missions. Indeed, that de-

velopment work is planned for initiation in late 1966. The size of the NERVA engine is

shown in figure 1-26 in comparison with the technology engine system. It uses directly

the technology that has been established through the program now underway. It is simply

a larger version. As mentioned earlier, the reactor is of essentially the same design

except that more fuel elements are used. The fuel-element outside dimensions are the

same. The diameter of the coolant channels is increased from 100 to 11() mils. Other-

wise, the element is identical. Extrusions of the modified elements have already been

made. The nozzle comparison is shown in figure 1-27. The nozzle that has been used

until now is compared with the Phoebus 2 nozzle that will serve as the basis for the NERVA

engine. The same basic design approach is used. However, the material is changed. As

higher performance is achieved, the nozzle will be fabricated of Hastelloy X instead of

the stainless steel used in the present nozzle.

A pacing factor in the development of the large NERVA engine is the construction of

test stands required for the higher thrust engine. Figure 1-28 is an artist's sketch of such

a test complex. Design of the facility will be initiated in the near future. The test-stand

complex, called Engine/Stage Test Stands 2 & 3, is being designed to test engines and, at

some future date, a complete propulsion module. Two positions are contemplated oper-

ating off a central control and logistic center. A close-up view of one of these test posi-

tions is shown in concept in figure 1-29. It employs a similar approach to that employed

in Engine Test Stand No. 1. "

CONCLUDING REMARKS

: .........

This completes a quick summary of the graphite reactor and engine program. The

work done to date gives a high confidence in our ability to proceed with assurance to the

development of the large NERVA engine. That engine will provide a major advance in

this country's propulsion capability. Nuclear rockets can be made available to provide a

flexibility of choice among future mission options as we proceed in the space program be-

yond Apollo.
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TABLE I-i. - COMPARISON OF NOMINAL DESIGN VALUES

OF KIWI, PHOEBUS 1, AND PHOEBUS 2

Reactor

Kiwi/NRX

Phoebus 1

Phoebus 2

Diameter,

in.

35

35

55

Design

power,

MW

1120

1100 to 1500

5000

Reactor

flow

rate,

lb/sec

70

70 to 94

285

Exit gas

temperature,

oR

4100

4100 to 4500

4500 to 5000

Date

2/3/66

2/11/66

3/3/66

3/16/66

3/25/66

Start

10

TABLE I-2. - ENGINE-SYSTEM POWER TESTS

Power

(maximum),

MW

440

250

230

160

350

1090

1040

Temperature

(maximum),
o R

2550

2050

2000

1450

2590

4100

3690

Duration,

rain

II

13

22

6

15

170 1500

1090 4090

1130 4175

18

16

Partial list of experiments

Normal bootstrap temperature

response

Chilled reflector start; turbine-

power-control-valve response;

temperature limiter

Fixed drum start; control drum

response

Low-pressure start (abort)

Normal start; pressure response',

temperature and power limiter;

cross loop limiter; 2500 ° R

mapping; no-flux-loop control

Normal start; design power and

temperature

Normal start; 3400 ° R mapping;

on-off controller

Control positioning error led to

automatic flow shutdown

Low pressure start; design point

system response; 4000 ° R

mapping

Duration capability; design point

system response

Total 110 (28 min nominal full power)
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TABLE I-3. - PRELIMINARY ASSESSMENT OF BEHAVIOR OF MAJOR

ENGINE COMPONENTS FOR ENGINE-SYSTEM TEST

Subsystem Or component Behavior Remarks

Nozzle/bleed port

Feed system:

Turbopump

Turbine -power- control

valve

Turbine-power-control-

valve actuator

Reactor

Reactor-control-drum actuator

Satisfactory

Satisfactory

Satisfactory

Excessive wear

Satisfactory

Satisfactory

Inspected with television

Replaced with improved model

Post mortem required

Sluggish operation of one actuator

due to hydraulic line freeze;

insulation installed

• =

rg..

P?
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_ T
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Figure I-3. - Graphite-reador and engine-system-testactivities.
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Figure I-5. - NERVA reactor model.
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Figure I-6. - Corrosion findings.
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Figure I-9. - Elements of engine-system-technology investigation.
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Figure I-lO. - Reactor test.
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Figure T-13. - Engine components within NRX/ESTenclosure.
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Figure T-J4. - Hot-bleed-portnozzle used in engine-systemtests.
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Figure 1-21. - Ground-experimental engine (XE).

Figure 1-22. - EngineTest Stand No, 1.
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Figure 1-23. - Exhaust-duct-elbow fabrication (ETS-I).
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handling equipment.
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Figure 1-25. - Graphite-reactorand engine-system-testactivitites.
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II. PROPELLANTFLO_S'_STEM _OMPONENTS*..... _'

Melvin J. Hartmann, Donald J. Connolley, Sidney C. Huntley,

Richard A. Ruday, and Irving M. Karp

INTRODUCTI6N-=-
-___ -: ...... : - _

Nuclear radiation heating of the propeUant and feed system components presents

some problems unique to thenuclear rock-et:. The results of recent Stu-cl_es will provide

information useful to the optimization, design, and operation of the nuclear-rocket feed

system.

The schematic drawing of a nucle_ l'0cket, shown in figure I1-1, cambe util_ed to

indicate the feed system components. The large volume of liquid hydrogen is stored

the tank at relatively low pressure. The pump provides the propellant flow at the high

pressures necessary for the operation of the system. The hydrogen flows to those por-

tions of the system that require cooling, such as the nozzle and the reflector, and then

flows intothe dome and through the reactor. HYdrog.e_n__tha_tha.s_be_enheated in the reac-

tor is then expanded through the nozzle to obtainthrust. Hot hydrogen isbled offfrom

the nozzle and mixed with lower temperature hydrogen to provide gases for the turbine.

The turbine supplies the power necessary to drive the pump. The turbine discharge may

be used for auxiliary systems aboard the vehicle.

Du_ing operation of this propellant feed system, the reactor is operating at full

power l_ and all_e_system co_nts _esubj_-ecte=d-t-o_nucle_radiation.The hydrogen, ......_---..........

the tank, and theo_e r com_nents ofthe feed system areall heat_b_is radiation. ...............
Because O_ the radiationlh_ati_g,the propeliantflowingfrom the t_ _s cor_h_Uouslyin- " •

creasing in temperature. As the PrOPel_t temperature approaches the boilingpoint,

vapor may form in the pump and inletline. Because of thisvapor, the pump failsto de-

liver the necessary pressure to operate the system. This pump problem is illustrated in

figure II-2, which shows a pump rotor operating in water. The pump rotor is viewed

from the inlet sideusing _ig_speed_photography. In figure II-2-(a)_the_mp_is Shown _ .....

operating with the inlet pressure well above fluid vapor pressure, as would be the case

waen the propellant i_aigmy_subCooied._ASthe auid temperature increases a_dap- ....

proaches saturation, large vaporous regions occur in the low pressure portions of the

*This paper is unclassified
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pump blading, as shown in figure II-2(b). These vaporous regions are referred to as

cavitation. This large amount of cavitation disturbs the flow in the blade passages, and

the pump performance is severely degraded. Under these conditions, the pump could not

provide the flow and pressure necessary to operate the system. Thus, a pump perfor-

mance limit occurs when the propellant temperature increases to some point as fluid

vapor pressure approaches the tank pressure.

Four areas of major importance to the nuclear-rocket feed system will be presented

in this paper. The general levels of radiation and the amount of shielding are the factors

that determine the extent of heat deposited in the propellant feed system. Some of the

considerations that are involved in shielding requirements for a nuclear vehicle will be

considered first. Secondly, in the area of propellant heating, the temperature history of

the propellant flowing from tanks subjected to relatively high levels of heat input will be

discussed, and a method of predicting this temperature history will be presented. Atten-

tion will then be focused on the factors that control the cavitation limit of the pump. The

fourth area, which represents an additional feed system problem associated with the pump

although not closely tied to radiation heating, is that of off-design performance of the

pump during system startup. Prediction of the performance of the feed system compo-

nents and the interrelation of the components will be emphasized throughout the discus-

sion.

SHIELDINGCONSIDERATIONS

A configuration to illustrate the considerations involved in the determination of the

shielding requirement for nuclear vehicles is shown in figure II-3. The engine and pro-

pellant tank are shown in their usual orientation, and a crew compartment may be located

in the stage. The case of a cluster of engines is represented by the phantom engine and

propellant tank.

The following discussion considers the radiation and required attenuation around the

reactors during operation and shutdown. In order to achieve the required attenuation, the

reactor shield weights are indicated, but they cannot be considered as final weight values.

The actual shield weight requires a more detailed evaluation than can be included in this

paper. Many items on a nuclear vehicle, other than the propellant feed system, require

protection against radiation. Instrumentation and electronic equipment can be damaged

or fail to operate properly in high radiation fields. Engine components can be damaged

or overheated by excessive radiation. In particular, the manned crew is extremely vul-

nerable to biological damage and may set severe radiation constraints.

Each radiation-sensitive item will require that its radiation environment over the

entire history of its use on the vehicle be evaluated and any necessary reduction in radia-
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tion determined. The total shield that may be:diStributed throughout the vehicle must

achieve this required radiation environment With minimum shield weight. The entire ve-

hicle may consist of more engines and more Stages than shown in figure ]I-3. Although

some items can best be shielded individually , _t may be more efficient to place most of

the shielding around the reactors.

The reactor assembly itself contains reflector and supporting structure around the

reactor core, which provide some of the required shielding. Additional shadow shielding

(fig. ]]-3) is necessary to protect equipment in the region directly above the reactor, to

prevent excessive radiation into the propellant feed System, and to protect the crew dur-

ing engine operation. Additional side shielding, which extends part of the way or the full

length of the reactor, may be necessary to protect items around the reactor that are not

shielded by the shadow shield. It may be necessary to reduce the radiation streaming

around the shadow shield that can scatter into the crew compartment and, in a configura-

tion with clustered engines or tanks, it may be necessary to reduce the radiation into ad-

jacent tanks and components.

Operating Radiation Levels

Radiation levels around the reactor during operation are extremely high. As an ex-

ample, the radiation environment around-an unshielded NERVA engine operating at 5000

megawatts is shown in figure TT-4. The gamma dose rates are showr_lSythe solid lines

and neutron dose rates by the dashed lines. Neutron and gamma dose levels greater than

108 rads per hour exist in the close vicinity of the reactor. These dose levels are suffi-

c-iently high to produce radiation problems in some of the equipmerit in this region. If the

crew members are located in the same vehicle stage as the reactor, they will be sub-

jected to excessive radiation.

The amount of _shielding required to obtain a desired reduction in dose is shown in

figure tt-5. The attenuation factor for both neutrons and gammas, which is defined as

the ratio of unshield_ed dose rate to shielded dose rate, is plotted against various thick-

nesses of boratedzirconium hydride, which is representative of a shield material that

attenuates both neutrons and gammas reasonably well.

An attenuation factor of about 10 in both neutrons and gammas may be required for

much of the equipment in the vicinity of the reactor. Depending on where the equipment

is located with respect to the reactor, this attenuation may be obtained by a shadow shield

alone, by a side shield, or by a combination of both. If a crew compartment is located in

the same vehicle stage, the dose rate to the crew will depend on the configuration of the

stage, the mode of operation of the vehicle, and the design of the crew compartment.

_adow shielding to attenuate direct radiation up to a factor of 103 and side shielding to

35

_= =



attenuate scattered radiation up to a factor of 10 may be required to protect the crew. In

figure 1I-5, about 7 5 grams per square centimeter of shielding are required to obtain an

attenuation of 10 in gammas, and about 215 grams per square centimeter of shield are re-
quired to obtain an attenuation of 103 .

Some estimates of the weight associated with these shield thicknesses, when the

shield was wrapped around a NERVA-size reactor, are presented in figure 11"-6. The

shield thickness of 75 grams per square centimeter represents about 5000 pounds of

shadow shield, and 215 grams per square centimeter of shielding represent about 14 000

pounds of shadow shield. A thickness of about 7 5 grams per square centimeter also rep-

resents about 23 000 pounds of full side shield. These weights might be substantially re-

duced by tailoring the shields, so that they produce the desired radiation attenuation with

minimum shield material.

Radiation Levels After Shutdown

Situations may arise where a crew member has to approach the shutdown engine.

Engine malfunctions, for example, may necessitate minor repairs. Rendezvous maneu-

vers or docking at an orbiting space station may also necessitate close approaches to a

shutdown reactor. The shielding requirements for these situations will depend on the

operating history of the reactor, the shutdown time, and the distance from the reactor.

Gamma dose-rate contours around an unshielded NERVA engine that has operated at

5000 megawatts for 30 minutes and has been shut down for 1 day are presented in figure

II-7. Shielding will be required all around the reactor before it can be approached. Be-

cause the nozzle opening cannot be shielded, there will be a large excluded region on this

end of the engine due to the radiation streaming through the nozzle.

The shield thickness required to obtain a desired dose rate at a point 10 feet from the

reactor (in the approachable region) for various shutdown times is shown in figure II-8.

If a total dose of 25 rads incurred during an approach of 30 minutes could be tolerated,

then the dose rate at that point must be reduced to 50 rads per hour. About 60 grams per

square centimeter of shielding are required to approach the reactor after a 20-day shut-

down period, while 135 grams per square centimeter of shielding would be required after

a 1-day shutdown period. In figure II-6, the 60 grams per square centimeter of shielding

represent about 18 000 pounds of side shielding and about 4000 pounds of shadow shielding.

The 135-gram-per-square-centimeter shield represents about 48 000 pounds of side

shielding and 9000 pounds of shadow shield. These weights could vary over a wide range

depending on the values assigned to the tolerable dose limit, the time spent in the radia-

tion field, as well as the distance of approach, engine operating history, shutdown time,

and engine size. These weights serve mainly to indicate that substantial shielding would
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be required for a man'to make a close approach to an engine within a few days after shut-
down. - ......

The shutdown discussion has pertained to radiation from the fission products con-
7 :

rained in the reactor. After shutdown, however, radioactivity induced in the engine (par-

ticularly in the nozzle), as well as the radiation that streams out of the nozzle opening and

scatters off the nozzle wails, can contribute appreciably to the dose field all around the

reactor. The background dose rate at any point will depend very largely on the nozzle de-

sign (size, amount, and type of materials used).

PROPELLANTHEATING

E

E

:
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During operation, the nuclear-rocket propellant is heated as a result of radiation be-

ing absorbed in the tank walls and in the propellant ......itself..... _ :The: effect of this heating is to

increase the temperature of the propellant as it flows from the tank. Figure II-9 is a

schematic representation of the effect of this heating on the propellant. Presented in the

figure are tank and fluid vapor pressure as a function of time before and throughout engine :

operation. The exit propellant temperature history is also shown. For the operating se-

quence presented, it is assumed that the tank is at some arbitrary pressure prior to en-

gine startup and that the fluid is saturated: Then, just priorto engine starting, the t_ _ :

is pressurized to a higher pressure, whi-ch is maintained throughout the operation_ AS- °

the operation continues, both the fluid exit temperature and the vapor pressure increase

and ultimately approach the saturation temperature and tank pressure, respectively.

A detailed knowledge of the exit temperature and, thus, vapor pressure history is

required because it influences the selection of pumps, insulation, shielding, venting de-

vices, and tank structure. A knowledge of the flow model induced by the nuclear heating

is required before the exit temperature history can be obtained.

To gain insight into this flow model, a_small-scale flow visuai_ation experimentwas _

conducted with a two-dimensional glass tank, which is shown schematically in figure

rf-10. Nuclear radiation heating was simulated by infrared radiation. The side infrared

lamps deposit energy in blackened side walls. The bottom infrared lamps deposit energy

in the fluid through a transparent glass tank bottom, which simulates nuclear radiation

heating of the propellant. The working fluid in this test was a mixture of trichloroethane

and alcohol. This fluid was chosen because it permitted a radiation absorption profile in

the liquid that is similar to that expected in a nuclear-rocket propellant. The flow pat-

terns induced in the liquid by the heating were studied by means of a schlieren system.

Figure II-11 represents a sequence from a schlieren motion picture that was taken

during a typical test run. Four frames are shown, which cover the time period for the

flow to develop fully. In the first three frames, a bn--so,'y layer is seen to form at the
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tank walls. Warm fluid from this boundary is carried to the free surface. The bulk fluid

appears to be in a state of highly turbulent mixing. The final frame shows the flow fully

developed. Two distinct regions exist in the fluid; the bulk fluid is completely mixed

(i. e., no temperature gradients), and a stratified layer exists at the surface.

Information gained from these small-scale tests enabled the formulation of an analyt-

ical flow model in which the nuclear internal and wall heating yield highly turbulent mixing

of the bulk fluid and stratification, respectively. The model was then verified by tests

conducted with liquid hydrogen. The material presented herein includes the formulation

of this model and results from tests conducted in liquid hydrogen with nuclear radiation

as the energy source. Also included are liquid-hydrogen tests wherein nuclear radiation

was simulated by electrical heating techniques.

Analytical Flow Model

A schematic diagram of the flow model is presented in figure II-12. A propellant

tank is shown in which internal heating of the liquid and wall heating occur. Boundary

layer flow along the tank walls, which results from the wall heating, is shown as it feeds

into the liquid near the free surface. The liquid has been separated into two regions, a

completely mixed bulk region and a stratified layer near the surface. The corresponding

temperature profile along the tank centerline is also shown. The temperature rise that

results from the heat input, sometime after the start of flow, is shown. The height of

the liquid-free surface x s and the bottom of the stratified layer x o are designated. Ini-

tially, before the tank was pressurized, the liquid was saturated. Thus, the entire height

of the tank was at a constant temperature. The temperature rise shown along the ab-

scissa was measured from this point so the initial temperature profile occurs at zero

temperature rise. Pressurizing the tank to its operating level causes the temperature at

the liquid surface to increase to a saturation temperature AT s corresponding to the oper-
ating pressure level.

The region of constant temperature rise was assumed to result from the internal heat-

ing contribution. Coupling of the internal and wall heating contributions was assumed to

result in a temperature gradient in the stratified layer. The temperature rise in the

stratified layer was assumed to vary according to the relation

AT* cc _ Xo]

where AT* varies from bulk temperature rise at the bottom of the stratified layer
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x = x o to saturation temperature rise at the_rface " x =k s. The%u]kiemperature rise ...........and the exponent n were obtain_ed from a_knowledge ofthe indivldual_eating contributions: ...............

The growth of the stratified layer x s x o was obtained by a consid_rati0n of the energy "

that entered the stratified layer because _ e free Convective boundaryTayer:flow. _ ......

The energy balance of the systemwa_idered in terms_of th-e:rate of energy leav' ............... -

ing the system, the rate of energy entering the system, and the ra_e ofaccumulation of .....

system energy. The interrelation of these terms may be shown by the expression

F

_: where

_ P

V s

AT(x, t)

d Jfv Cp AT(x, t)p dV (1)WCp AT(o, t) : Q(Xs) - _-_ s

flow rate of liquid leaving exit, lb/sec
; _ . : = =

specific heat o{liquid at Consi_an_ pres_re, :Btup(lbi(°F) :: =

temperature rise_attank_exit at given time "t, OR

total heating rate entering the liquid, function of height of liquid x s at any
time, Btu/sec

liquiddensity, Ib/ft3

volume, ft 3......................

volume of liquid in tank, function of height of liquid, ft 3

temperature rise at x at given time t, OR

F_

The heating rate (_(Xs) includes both the heat entering the liquid through the walls and the

heat being deposited internally in the liquid.

Equation (1)was made nondimensional by using reference values of flow rate _and

saturation temperature rise AT s. The total heating rate into the full t_ QL: was-aiso

used to make the heating rate nondimensional. This operation led to the expression

Zz L QL J d'-_ AT s '
/v L

where _- = t/tru n is total run time in seconds, V L is the initial liquid volume in cubic

feet, and L is the initial liquid height in feet..

The reference values of :QL' _, and AT s are combined into a heating parameter
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that consists of initial operating conditions only. The nondimensional energy equation thus

shows that the exit temperature variation with time will be a function of the heating param-

eter QL/(_Cp aTs ) operating on the normalized heating rate distribution Q(Xs)/Q L and

a term containing the nondimensional temperature profile, which may be thought of as the

liquid flow model. Equation (2) also shows the relation between the various parameters,

a knowledge of which is required to predict the exit temperature history.

N uclear Radiation Experi ments

The model used in the energy equation was developed from noncryogenic tests. To

substantiate this flow model in liquid hydrogen, an experiment was conducted under con-

tract with the General Dynamics Corporation. An insulated test tank of about 125-gallon

capacity was placed above the Aerospace Systems Test Reactor (fig. II-13). To avoid ex-

cessive radiation exposure in the surrounding area, the experiment was shielded by sub-

mersion in water. This necessitated a liner tank, shown in the figure, which served

solely as a water barrier. Provision was made for pressurization and flow, as indicated.

The flow model, in essence the temperature as a function of position, was explored by

platinum resistance thermometers within the tank.

Some tests were conducted with the reactor against the liner tank and others with

4 inches of water between the two, as shown in figure II-13. These two configurations

enabled testing with different heating distributions in the hydrogen. The internal heating

profiles for the two test configurations are shown in figure II-14. Presented are the heat-

ing rates on the tank centerline as a function of liquid height for the two tank positions.

The ordinate has been arbitrarily normalized to 1 megawatt of reactor power, since the

heating is proportional to reactor power that was varied through the program. The curves

display the typical exponential radiation attenuation. The effect of the 4 inches of water

is readily seen; a large fraction of the neutron component has been eliminated, which re-

duces the magnitude of the heating and gives a much flatter profile for the second configu-

ration.

The total heating of the liquid integrated over the liquid volume is presented in figure

II-15. (This is the integral shown in eq. (1).) The total heating rate up to a point in the

tank plotted against liquid height for the two configuratlons is shown. This total heating

rate is composed of three components; two nuclear in origin, an internal heating of the

liquid and a nuclear wall-heating component, and a third component, the ambient wall

heating, that results from conduction through the insulation. Although the centerline pro-

files (fig. If-14) for the two configurations differ considerably and the integral curves

differ in magnitude, the integral curves have nearly the same shape. This results pri-

marily from tank geometry; that is, the region of the tank in which there is a large differ-
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ence in the profiles is that region with little liquid which, when integrated, contributes
only slightly to the total heating.

A series of tests was conducted wherein the effects of varying total heating, configu-

rations, flow rate, and tank pressure were studied. A representative set of data is pre-

sented in figure H-16. The temperature rise is plotted against time from start of flow as

seen by four sensors on the centerline of the tank; one at the bottom in the exit port, three

others at 15, 21, and 27 inches up from the bottom. It is seen that, for all sensors, the

temperature rises are gradual until the liquid surface approaches the sensor. A sharp

increase in temperature rise then occurs , whic h indicates the passing of a warm strati-

fied layer. When the surface reaches the sensor, saturation temperature is indicated.

At some particular time, when the level is at 27 inches for exa_nple , it is seen that the

sensors several inches below the surface _a_:all :recording about the same temperature

rise, approximately 1° R. This indicates that the bulk fluid is completely mixed. Thus,

it is seen that the hydrogen is divided into the two regions observed in the infrared exper-

iments, completely mixed bulk fluid and a stratified layer. A comparison of the experi-

mental data and the predicted temperature histories indicates that the analysis presented

earlier yields a reasonable prediction of the temperature history.

Data from six tests are presented in figure II-17 as generalized temperature histo-

ries. Exit temperature rise normalized to saturation temperature rise is plotted as a

function of flow time normalized to the total run time. It is seen that the data fall into

two sets that are characterized by heating parameters of about 0.38 and 0.12. The oper-

ational variables of flow rate, pressure, and total heating were varied within each set to

yield the appropriate heating parameters. The data within each set generalize to a single

temperature history.

The fact that the data presented on figure H-17 with similar heating parameters and

similar heating rate distributions yielded the same generalized exit temperature histo-

ries indicates that the assumptions used to obtain the flow model were adequate over the

range of variables explored.

Electrical Heating Experiments

"7-

Some liquid hydrogen experiments, conducted in a test facility at Lewis Research

Center, explored the effect of heating rate distr_ution in the flow model. These experi-

ments supplemented the nuclear heating experiments inasmuch as the different reactor

tank positioning did not result in an appreciable change in the normalized heating rate

distribution. The normalized heating rate distribution had been indicated as one of the

parameters that affected exit temperature history in the generalized energy equation

(eq. (2)). The first objective of these experiments was to simulate electrically nuclear

41



heating and, for the second objective, the electrical heaters were used to extend the test-

ing to a wide range of heating rate distribution.

The test equipment consisted of a tank that had the same size (125 gal) and geometry

as the nuclear experiment and was heated with radiant heating along the tank bottom and

the tank walls (fig. H-18). The tank and radiant heaters were contained in a vacuum shell

(not shown) to reduce the heat leak into the system. The radiant heaters, separately con-

trolled, were then adjusted to simulate both the ambient heat leak and the nuclear heat

deposited in the walls. The nuclear heat deposited in the liquid was simulated by a net-

work of wires placed inside the tank. Practical considerations led to the design presented

in figure 11-19. The immersion heater consisted of 25 elements, spaced 1-inch vertically

and controlled separately to match the internal nuclear heating gradient. Each element

was constructed from a continuous length of 0.020-inch resistive heating wire that ran

chordwise back and forth across the tank at 1/4-inch horizontal spacings. The elements

were placed at 90 ° with respect to adjacent elements to minimize the coupling of induced

flow patterns.

To establish the validity of using the immersion heater to simulate the internal nu-

clear heat deposited in the liquid, a test was conducted, which was compared with a nu-

clear test. A comparison of the heating rates established is presented in figure 11-20.

The electric heating rate distribution, shown by the solid curve, indicates about the same

trend as the nuclear heating rate distribution (dashed curve). Test results in which this

distribution was used and the operational variables were set to give a heating parameter

similar to that of the nuclear test are presented in figure 11-21. The generalized exit tem-

perature histories are about the same although the electric simulation test was slightly

higher during the early portion of the run and lower near the end. This variation between

the two temperature histories indicates that less energy was being stored in the stratified

layer for simulation tests. These test results indicate that the line-source-type heating

from the wire grid work resulted in flow spikes of hot fluid, which tended to reduce the

thickness of the stratified layer. Although it was thought this would be the most logical

approach, the immersion heater did not simulate the smooth deposition of nuclear heating.

The infrared tests with the noncryogenic liquid indicated that a high degree of turbu-

lent mixing occurred in the tank bottom (fig. 11-11). This turbulent mixing was somewhat

like hot-plate heating. The radiant heater arrangement used in the present experiment

was capable of providing additional power to the tank bottom heater, thereby giving a tur-

bulent addition of heat without the flow spikes of hot liquid from the wire line sources.

An example of the radiant heating rate distribution selected to simulate a nuclear heating

rate distribution without using the immersion heater is presented in figure 11-22. The

normalized heating rate distribution with electric radiant heating is compared with a

heating rate distribution from the nuclear tests. The operational variables were set to

obtain similar heating parameters. _.a _t results using these heating rate distributions
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are presented in figure 11-23. A comparison of the electric radiant heating test and the

nuclear heating test shows that the generalized exit temperature histories are almost

identical. A reasonable simulation of the effect of nuc_le_ heating was obtained, then,

using just the radiant heaters.

The radiant heaters were then used to extend the test program to other heating rate

distributions. The range of heating rate distributions tested are presented in figure 11-24.

The heating rate distribution of a typical nuci_ar test is shown for comparison. In differ-

ent tests, the heat flux was progressively:varied from essentially all wall heating to es-

sentially all bottom heating. These cases are depicted in figure II-24 as high wall and

high bottom, respectively. Throughout this entire range of heating rate distributions, no

gross change in flow patterns was observed.

The exit temperature history for the high-bottom heating rate distribution was pre-

dicted by the analytical flow model. The operational variables established for a test run

were applied to the analysis. The predicted exit tempera_re=history and the tested data

are presented in figure II-25. A comparison of the test data and the predicted general-

tzed exit temperature history shows that the effect of the high-bottom heating rate was

predictable.

The electrical heating studies have shown that the test results with nuclear heating

could be simulated in the particular tank used. This simulation was accomplished with

only the bottom and wall radiant heaters. With no gross change in liquid flow behavior

over a wide variation in heating rate distribution, no=anomalies are expected to occur in

the flow model. It is expected, therefore, that exit tempera_re history will be predict-

able over the range of operating conditions to be encountered with nuclear-rocket-type

heating.

U

HYDROGENPUMP PERFORMANCE

The preceding sections have shown that the temperature history of the propellant

flowing from the tank will vary over a_wic_e_range of temperatures from subcooled to satu-

ration. As the temperature approaches saturation, the problem of encountering pump

cavitation arise. This imposes a temperature limit on the operation of the system, as

illustrated in figure 11-26. The temperature rise histories that would result from a high

and a low heating rate are characterized in the figure. In terms of system operation, the

temperature limit TLIMI T must be known in order to establish thetemperature history

needed to obtain the required run time. Some of the factors that influence this tempera-

ture limit in the pumping process will be discussed in this section.

IIigh-pressure pump stages, suchas-the centrifugal pumPdiscussed earlier, are

particularly susceptible to the detrimental effects of cavitation. Because of this effect
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of cavitation on performance, an inducer stage is used upstream of the high-pressure

stage when it is necessary to pump propellants at very low pressure levels above vapor

pressure. An inducer employs a particular type of blading, which can achieve the neces-

sary pressure rise even when substantial cavitation vapor occurs.

An experimental inducer and a centrifugal-flow hydrogen pump combination are shown

in figure II-27. Although the inducer is shown as a separate stage, it can also be made an

integral part of the high-pressure centrifugal stage. During operation, the hydrogen flow

enters the pump at near tank outlet conditions and is gradually pressurized as it flows

through the inducer. It then flows through the centrifugal stage, where it is raised to a

high pressure and delivered to the engine. Inducers are also used in combination with

axial flow pumps, as shown in figure II-28. Operation of this unit would be the same as

for the centrifugal pump, except that the high pressure is generated in four axial-flow

stages. In both of these pumps, the primary function of the inducer is to increase the

fluid pressure to a sufficient value so that vapor will be avoided in the following high-

pressure stages. To do this, the inducers are designed with very long helical-type blad-

ing, as shown in figures II-27 and II-28. This type of blading repressurizes very slowly

any vapor that is ingested or formed on the blades such that the vapor is collapsed prior

to the discharge.

An inducer operating at high speed in water is shown in figure II-29, which is a se-

ries of photographs that shows the various phases of operation as related to the margin

of inlet pressure above vapor pressure. Figure II-29(a) shows operation with an inlet

pressure much higher than vapor pressure, which could be comparable to operating with

a subcooled liquid. No vapor is visible on the blade surfaces. Figure II-29(b) shows the

effect of a reduction of inlet pressure above vapor pressure, which can be compared to

approaching saturation. Moderate quantities of vapor or cavitation are formed in the low-

pressure region of the blade tip and on the surface near leading edge. The vapor formed

is collapsed prior to the discharge, and inducer head rise has not been affected. Reducing

the inlet pressure above vapor pressure results in more vapor or cavitation on the blad-

ing, as shown in figure II-29(c). This vapor is also collapsed prior to the discharge,

which indicates that the head rise has not been affected. Continually decreasing the inlet

pressure above the vapor pressure results in the condition shown in figure II-29(d), where

extensive cavitation is seen throughout the inducer blading. At this condition, inducer

head rise has been seriously degraded.

The cavitating performance of an inducer can be characterized as shown in figure

]I-30, where the head rise divided by the noncavitating head rise is shown as a function

of the inlet pressure above vapor pressure (NPSH) in feet of liquid. Operation at high

values of NPSH is comparable to that seen in figure II-29(a), where no vapor is being

formed. As NPSH is reduced, vapor is formed in increasing quantities until a degrada-

tion in performance is obtained (fig. II-29(d)). A minimum allowable NPSH can be estab-
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lished anda useful operatingrangedefinedby settinga limit to the allowable degradation

of performance. The 0.9 value of normalized head rise, as shown in figure 11-30, is gen-

erally acceptable from the standpoint of not affecting the performance of a following high-

pressure stage. This NPb_-I limit is generally obtained experimentally by reducing the

inlet pressure while maintaining the vapor pressure constant. However, it can also be

related to the propellant heating situation by considering the increasing vapor pressure

that results from increasing temperature. For this type of operation, inlet pressure or

tank pressure would be held constant, and the performance would be encountered as the

vapor pressure increased.

Cavitation Performance

During the pumping of liquid hydrogen, it has been observed that performance ob-
tained at lower values of NPb_I is more suitable than that obtained in other fluids. To

understand this, it should be recalled that an inducer operates successfully with extensive

cavitation or vaporous region s within the blade passage. This Phase-change process,

which limits the inducer Performance, is affected by the properties of the fluid that is be-

ing pumped. The phase-change process on___ inducer blade is depicted in figure 11-31.

The flow over a long inducer blade is shown where the blade is rotated in the downward

direction, and the incoming flow is shown by th e arrow. The under side of the blade is

the high-pressure surface, and the upper_ side is the low-pressure surface. A vapor

cavity is shown on the low-pressure surface of the inducer blade. The vapor that is

formed in the low:pressure region cools a thin film of the liquid below the temperature

of the bulk or incoming liquid. This cooling of a liquid film results in a reduction in

local vapor pressure , a s shown in the vapor pressure diagram of figure H-31. The bulk,

or incoming fluid, and the cooled film are indicated in the vapor pressure diagram. The

temperature drop and local vapor pressure drop (VP drop) are related through the char-

acteristics of the fluidby the slope of the vapor pressure curve. A simple heat balance

that equates the heat for vaporization to the heat withdrawn from the thin liquid film can

be written as

.... PvV;L = PLCLA*(hT)h (3)

where the heat for vaporization is determined by the product of the vapor density PV' the
* and the latent heat of vaporization L. The heat with-volume of the vapor formed Vv,

drawn from the liquid film is the product of the liquid density PL' the specific heat of the

liquid CL, the area of the cavity surface A*, the temperature drop in the liquid film

AT, and the effective thickness of the cooled film h. By replacing the temperature drop
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AT with the vapor pressure drop AVP and the slope of the fluid vapor pressure-

temperature relation dp/dT, the following expression for the local change in vapor pres-
sure can be obtained:

C L d
u n (4)

where the hydraulic constant K* contains the terms required for geometric similarity

* and A*). The effective thickness of the cooled film has been replaced by(including Vv

the diffusivity _ and the reference fluid velocity u both raised to an exponent dependent

on the heat- and mass-transfer process involved. The hydraulic constant and the expo-

nents can be determined from experimental data.

Equation (4) has been checked for various fluids in a cavitating venturi, which has

this same type of vapor cavity and in which the pressure drop within the cavity could be

measured and compared with the calculated value. For the fluids run in the venturi,

which were water, nitrogen, glycol, and Freon, the measured and predicted values were

identical over a range of temperatures and velocities. Thus, this simple heat balance

equation was sufficient to characterize the cavitating venturi. The Bureau of Standards

is presently testing this same venturi in hydrogen. At this time, their data are not avail-

able, but the predicted pressure drop for hydrogen at various temperatures has been cal-

culated and is presented in figure II-32. For liquid hydrogen at 37 ° R, which is the boil-

ing point at a pressure of 1 atmosphere, the fluid properties are such that a vapor pres-

sure drop of about 130 feet is predicted. Liquid-hydrogen fluid properties produced a

very large change in vapor pressure drop as a result of a small change in temperature.

An increase in the hydrogen temperature from 37 ° to 42 ° R increased the predicted vapor

pressure drop from about 130 to 300 feet. Conversely, the predicted vapor pressure drop

decreases as the hydrogen temperature decreases below 37° R. Predicted vapor pressure

drop for water is noted to be relatively small for the case of room-temperature water

(75 ° F). It is necessary to raise the water temperature to 450 ° F in order to obtain an

estimated vapor pressure drop of 130 feet of liquid.

The reduction in local vapor pressure in the region of the cavity allows a reduction

in inlet pressure to the inducer. This increase in local vapor pressure drop with hydro-

gen temperature potentially allows the margin of inlet pressure above fluid vapor pres-

sure to be lowered with the same performance. Thus, the performance curve of figure

II-30 may shift to lower margins of inlet pressure about vapor pressure.

Experiments specifically designed to investigate these hydrogen temperature effects

on the performance of a pump inducer have been conducted at Lewis. For these experi-

ments, an inducer was installed in the bottom of a liquid hydrogen tank, as shown in
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figure ]1-33. Both the inducer and its housing were completely immersed in the liquid.

Flow entered the inducer through a converging inlet duct, was pressurized by the inducer,

and returned to the tank. Pressure and t-emperature data were both measured at the inlet ....

and pressure was measured at the exit of the inducer to determine the performance. Flow

rate was measured in the discharge line. A wide range of propellant temperatures was

set in the tank by the use of auxiliary systems available to the facility.

The effect of liquid-hydrogen temperature on the performance of the inducer is shown

in figure II-34. The head rise divided by the noncavitating head rise is plotted as a func-

tion of varying inlet pressure above vapor pressure or NPSH for constant values of inlet

temperature. To isolate the temperature effects, all the data were obtained at a constant

flow rate and rotational speed. At a constant inlet temperature, for example 32° R, the

experimental performance (indicated by the dashed line) was obtained by decreasing the

inlet pressure until a degradation in performance was obtained. Increasing the tempera-

ture produced an improvement in inducer operating range by moving both the initial drop-

off and the complete breakdown in head rise to lower values of NPSH. At a liquid-hydrogen

temperature of 42 ° R, the inducer was still capable of producing 95 percent of its normal

head rise at 0 NPStt. This indicates that a saturated liquid is entering the inducer.

The solid curves shown in figure H-34 are the predicted effects of temperature on

inducer performance. To obtain these curves, experimental data at 32 ° and 37° R were

used to evaluate the hydraulic constant K* of the cavity. With this constant evaluated,

the vapor pressure-drop equation was used to calculate the 34 ° and 42 ° R curves. The

calculated curves show the same performance trend with the temperature that was ob-

tained experimentally. Thus, the trend of temperature effects on performance can be

reasonably predicted by the heat balance model.

By rearranging and replotting this data__the change in performancewith temperature __

_re_Iated to system operation as shown in figure II-35. The head rise divided by

noncavitating head rise is plotted as a function of varying temperature for constant values

of inlet or tank pressure. The arrows indicate the saturation temperatures corresponding

to the pressures shown. The temperature limit at which cavitation would become a prob-

lem in an engine feed system can be estimated. For example, at a tank pressure of

15 pounds per square inch, an increase in the propellant temperature would produce a de-

gradation in performance at a temperature less than the corresponding saturation temper-

ature. This temperature at which the assumed 0.9 limit in performance isobtained thus

defines the limit of system operation as a function of tank outflow temperature. At a tank

pressure of 30 pounds per square inch, an increase in the propellant temperature would

produce a small degradation in performance. At this pressure, the performance of the

example inducer remained above the 0.9 limit throughout the temperature range, even at

the corresponding saturation temperature. This combination of conditions would allow

the pump to operate over the entire range of tank outflow temperature that results from
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nuclear heating. Thus, the temperature limit imposed by cavitation is highly dependent

on the selected operating conditions of the system. By using the 0.9 performance drop

as a limit, the example inducer would be capable of pumping all the propellant in the tank

at tank pressures above 25 pounds per square inch. At lower values of tank pressure and

corresponding saturation temperatures, the amount of propellant left in the tank would be

dependent on the tank outflow temperature history as affected by nuclear heating.

Effect of Vapor Ingestion

To examine the effect of vapor ingestion on the performance of an inducer, electric

heating elements were installed in the outer wall and the center body of the inducer inlet,

as shown in figure ]]-36. This inducer test section was investigated in the same test fa-

cility that was shown in figure ]I-33. Temperatures and pressures were measured above

the heater element and at the face of the inducer. The measurements were taken in such

a manner that the volume of vapor could be estimated.

The resulting inducer performance data obtained with liquid hydrogen at about 37 ° R

and with 14-kilowatt heater power input to the hydrogen flowing into the inducer are shown

in figure H-37. This corresponds to a heat input of about 1 Btu per pound of hydrogen

flow for this particular test. The inducer head rise over noncavitating head rise has been

plotted for a range of inlet pressures above fluid vapor pressure. The estimated volume

flow as a percent of total volume flow entering the inducer is shown and can be seen to in-

crease as the N-PSH is decreased. As an example, it is estimated that a volume of vapor

equivalent to 15 percent of the inducer flow is ingested by the inducer when the inducer

head rise is degraded to 0.9. These data were obtained at a nominal hydrogen tempera-

lure of 37 ° R in the tank. Since most of the heat addition resulted in nucleate boiling, the

temperature rise of the liquid while passing through the heated section was very smalI.

The effect on the inducer performance of varying the level of heat addition to the pro-

pellant in the inlet pipe is shown in figure H-38. The inducer head rise over noncavitating

head rise is shown for a range of N-PSH. Increasing heat input to the liquid necessitated

increasing the NTSH to avoid an extensive drop in inducer head rise. The data in this

figure were obtained for a constant value of liquid flow and rotational speed. However,

as previously shown in this paper, the volume flow increased as a result of the increase

in vapor formed as the inlet pressure above vapor was decreased. The vapor volume

could also be expected to vary with the level of heater power applied. The effect of the

ingested vapor volume at the 0.9 noncavitating head rise point can be observed in figure

II-39(a). The required NPSH for the 0.9 noncavitating head point is shown as it varies

with inducer liquid flow. The flow coefficient can be considered proportional to volume

flow rate. For no heat, the required NPSH increases with flow. A similar trend is
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shown for all levels of heater power. If the flow is adjusted to an increased flow for the

estimated vapor volume, the curve shown in figure II-39(b) results. It was assumed that

the zero heat data was the base, as shown by the open symbols, and the heat input gener-

ated additional vapor volume. The solid points are the same data as shown in figure

If-39(a) except that they are adjusted to higher volume flows, which accounts for the esti-

mated vapor ingested for that particular data point. For example, the point at a flow co-

efficient of 0.063 and 14-kilowatt heater power, at which 15-percent vapor volume was

observed, was adjusted to a flow coefficient of 0. 073. The single curve indicates that the

N'PSI-I increase required to collapse.the vapor entering the inducer inlet is only that re-

quired to account for increased inlet volume flow. However, an adjusted flow coefficient

of 0.0"/9 represents the maximum volume flow that can be achieved even with a large in-

crease in NPStt. The data of figure II-39(a) represent the performance based on the liquid

volume flow, whereas the curve in figure II-39(b) is the performance based on the total,

which is the vapor and liquid volume flow. T_ne total volume flow curve can be determined

by the data obtained with no heat addition. Thus, in those cases where it is necessary to

provide for some vapor ingestion, the inducer size or design point may be selected so

that a relatively small increase in NPSH is required.

PUMP PERFORMANCE DURINGSTARTUP

The startup of a nuclear engine is somewhat unique from other rocket systems, in

that it may take up to 30 seconds to achieve full power. During this relatively long time,

acct_rate control over the system must be maintained throughou_ ai] the pleases of the

startup transient. To achieve this control, a detailed knowledge of compon_ent operatin_

characteristics, including the pump, is required for all of the off-design conditions en-

countered during the startul_ ti_an-s-ieht. ............ " ............. ::

The performance of the pump during startup is illustrated in figure II-40, where the

low-speed portion of the pump perf0rmance is plotted in terms Of pressure rise, _fl0W: -

rate, and rotatio-_] speed. An ex-arnp]e transient, indicated by the dashed line, was ob-

tained during cold-flow system startup tests with an axial flow pump. The known region

of pump performance is indicated by the constant speed lines between stall and some

limiting value of flow rate. The startup was initiated by allowing flow to pass through the

pump under the action of tank pressure, which produced pump windmilling and resulted in

the negative pressure rise portion of the transient to point A. At this point, power was

supplied to the turbine, and the pump was accelerated into the known_region of perfor-

mance, as indicated by the remainder of the dashed line. Pump performance above

25 percent of design speed is relatively well understood; hence, the following analysis

will consider the performance in thelow-speed and windmilling r_ons 0fthe transient.
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Complete details of the windmilling analysis are given in the reference list. The

following is a brief description of this analysis. The windmilling region can be analyzed

by using the flow model shown in figure II-4I. The sketch shows several blades of an

axial stage, where the flow and rotor speed are described by the velocity-vectors V and

U. The performance of the stage can be described by a one-dimensional, incompressible

energy equation, which is

u u cfv 2 + (u - cv) eAp_ _V 2 + +

p 2g g 2g
(s)

This equation describes the change in static pressure across the stage Ap/p in terms of

the change in kinetic engines AV2/2g, the work done U AVu/g , the viscous flow loss

Cfy2/2g, and the entrance flow loss (U - CV)2/2g, when Cf and C are the friction and

entrance loss coefficients, respectively. By substituting physical quantities for a particu-

lar stage design, the change in pressure can be described in terms of flow rate w and

rotational speed N such that

Ap = K1 _2 + K2N _ + K3 N2 (6)

Generalizing equation (6) with flow rate yields an equation in terms of the speed parameter

(N/w), which is

W

(7)

Equation ('7) is capable of solution down to zero speed and throughout the windmilling re-

gion.

The analysis was applied to the axial flow hydrogen pump (fig. II-42), which was used

for the system startup tests. The pump contains a mixed flow inducer stage and six iden-

tical high-pressure axial flow stages. Mean diameter design considerations of each stage

were used to evaluate the terms in equation (5), and a generalized equation (eq. (7)) was
obtained.

The resultant windmilling performance calculated for this pump is compared with ex-

perimental data in figure II-43. Both the calculated performance and the data indicated

by the symbols are plotted in terms of the generalized pressure drop, that is, the nega-

tive pressure rise over flow rate squared as a function of the generalized rotor speed ex-

pressed as rotor speed over flow rate. To estimate the effects of the large inlet flow de-

flections on the stage discharge angles, two boundary conditions were evaluated; one was
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based on design fluid angles, and the other assumed that the flow followed the blade angle.

Good agreement between data and the design fluid angle curve is indicated at zero speed

and throughout the windmilling region. The performance was calculated to the steady-

state windmilling point indicated as the zero torque or zero work point. Operation be-

tween this point and zero speed represents the accelerating region of windmilling. Opera-

tion beyond this point (higher values of N/w) represents the powered region of pump per-

formance.

With the analytical model for the windmilIing region, a complete generalized pump

curve can be developed, as shown in figure II-44. Both the normal or known region and

the windmilling region of performance are plotted in this figure in terms of the general-

ized pressure rise and rotor speed. The normal or known operating region can be de-

scribed analytically by a blade-element technique or by available pump data. Available

pump data were used in the example shown in figure Ii-44. The segment of the curve be-

tween the two regions can be obtained by interpolation, as shown by the dashed line. The

resultant generalized curve represents pump performance from zero speed to the limit of

the normal operating region.

With appropriate values of flow rate and rotor speed, the curve can be expanded into

a low-speed pump map, as shown in figure II-45. Pump pressure rise is shown as a func-

tion of flow rate for several constant speeds from 0 to 6000 rpm (approximately 25 percent

of design speed). The solid curves represent the predicted performance, and the symbols

represent data obtained from the system startup tests. Good agreement between the pre-

dicted and experimental data is indicated for all-the operating regio-ns illustrated in figure --

H-44. The example startup transient (fig. II-40) is shown on the constructed map, as in-

dicated by the dashed line. The path followed by the pump falls within the analyzed re-

gions of performance.

The results of the analysis described indicates that axial-flow pump performance can

be reasonably predicted during engine system startup. The development of the wind-

milling model and the interpolation technique shown in figure H-44 provide a method of

describing pump performance in the extreme off-design operation encountered during

startup.
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..... SUMMARY

Recent studies that affect the optimization between shielding, tank heating rates, and

pressure levels and the cavitation-limiting condition in the pump of a nuclear-rocket feed

system have been discussed_ Efforts have been concentrated onimpro-vingt_e abilityto

predict or character_ _e effect of radiation heating on the limiting factors of the vari-

ous feed system components. Results of these studies are as follows:
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1. There are a large number of factors that must be considered in the determination

of the nuclear shielding requirements of a vehicle. In some stages, the crew may set

such stringent requirements that propellant system heating will not result in a difficult

problem. In other stages, substantial radiation heating may occur. It is desirable to de-

velop a single-propellant feed system that is as tolerant of radiation heating as possible

to cover this wide range of operating conditions.

2. Flow from hydrogen tanks subjected to high levels of radiation heating indicates a

continuously increasing temperature with the final temperature at saturation for the given

tank pressure. It is necessary to predict this temperature history rather precisely,

since it determines the N'PSH available to the pump. Prediction methods _vere presented

for the determination of propellant temperature history. Nuclear radiation and electrical

heating tests were conducted to verify the assumptions.

3. Pump inducers have demonstrated the capability to operate in liquid hydrogen at

lower margins of N-PSH than a similar inducer in other fluids. It has been shown that this

required margin of NPSH decreases as the hydrogen temperature is increased. A method

of determining inducer performance trends with hydrogen temperature was presented.

4. Vapor formed in the inlet pipe as a result of radiation heating must be ingested by

the pump inducer. The increase in inlet pressure above vapor pressure to allow for

vapor ingestion can be estimated by methods presented. Methods for adjusting the inducer

design to account for vapor ingestion were discussed.

5. During system startup, the pump may be caused to windmill, and it is operated

over a wide range of pressures and flow rates. Methods of estimating the windmilling

and off-design performance have been presented. The calculation of off-design perfor-

mance would be appreciable to multistage axial flow pumps, since they may be required

for future nuclear rocket engines. The predicted performances are particularly useful

for the determination of the system startup transient.
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Figure II-2. - Cavitating centrifugal impeller.
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Figure II-28. - Axial pumpwith inducer.
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(a) Nocavitation. (b) Moderatecavitation.

(c) Extensivecavitation. (d) Cavitation breakdown.

Figure II-29. - Cavitating inducer.
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Figure 1"1-30.- Inducer cavitation performance.
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Figure11-33.- Pumpcavitationfacility.
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INTRODUCTION

Some of the heat-transfer and fluid mechanical phenomena associated with the opera-

tional problems of the nuc!ear rocket are elaborated upon hereto; Not only is the prog-

ress that has beenmade _ thepast 4 years described , but the areas are indicated where

general understanding is inadequate. The discussion is organized in two major parts:

(1) the difficult heat-transfer problems associated with the steady-state operatibn of the

nuclear rocket (Some of this discussion is pertinent to the chemical rocket as well.);

(2) the heat transfer and related pressure drop involved in the transient Startup Of the

nuclear rocket. Paper IV (STARTUP DYNAMICS AND CONTROLS) pursues this startup

problem in its stability and controls aspects. Heat transfer and stability are inherently

related.

When the flow of hydrogen is traced through the passages of the nuclear engine (fig.

rr[-l), a number of convective heat-transfer problems are apparent. Within the nozzle

cooling passages, the cooling capability of the cryogenic hydrogen must be considered.

It must cope with the heating load imposed by the high-temperature hydrogen flowing

through the nozzle on the other side of the wall.

After leaving the nozzle cooling passages, the hydrogen flows through the reflector,

providing a cooling function ther e. By the time it reaches the reactor core, the hydrogen

has reached £_emperature of3b0 ° R. Within the core it is boosted to a temperature of

4500 ° R or higher and then it imposes the high-temperature conditions upon the nozzle.

Some challenging heat-transfer problems exist in the core. However, this discussion is

focused on the nozzle gas side and coolant side heat transfer. The ability to cool the noz-

zle is perhaps the most critical heat-transfer problem in the steady-state operation of

the nuclear rocket. As a design procedure, the heat-transfer prediction techniques must

lead to an estimation of the wall temperature in the nozzle.

If the gas-side wall temperatures for a NERVA nozzle were to be calculated using

the limited heat-transfer infgrmation available_several years ago, such as the Bartz

*This paper is unclassified.
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Simplified equationon the gasside anda straight pipeflow equationon the coolantside,
the result wouldbe discouraging. Shown in figure HI-2 is the gas-side wall temperature

in OR as a function of nozzle length. The predicted temperature at the throat is in excess

of 2600 ° R. This prediction of such high temperatures, caused people elsewhere and at

Lewis to reexamine nozzle heat transfer both on the hot gas side and on the coolant side.

How the results of such heat-transfer experiments have led toward lower predicted values

of nozzle wall temperatures is described herein.

STEADY-STATE 0 PERATION

Gas Side Heat-Transfer Coefficients

Several heat-transfer experiments have been performed both at Lewis and elsewhere

which have indicated that the heat-transfer rates at the throat of rocket nozzles are con-

siderably less than those predicted by any of the commonly used convective heat-transfer
I

correlations for turbulent flow. The results from two typical experiments are shown in

figure IH-3.

The local heat-transfer coefficient divided by the calculated maximum value at the

throat of the rocket nozzle is plotted against nozzle area ratio. The vertical line repre-

sents the nozzle throat with the converging portion of the nozzle to the left and the diverg-

ing portion to the right. The curve labeled Bartz represents the heat-transfer coefficient

distribution obtained using a Bartz Simplified calculation.

The two other curves are from experimental data obtained from two different nozzle

heat-transfer experiments. The nozzles of both experiments had the same contraction

and expansion angles but had different area ratios and were of different scale. One exper-

iment used heated air and the other a liquid hydrogen-oxygen rocket. The data from these

two experiments, although for entirely different temperatures, pressures, and heat

fluxes, show close agreement. The important result from both these experiments is that

the heat-transfer coefficient in the vicinity of the throat of the nozzle is only about 60 per-

cent of the calculated value.

Acceleration effects on heat transfer. - The sizeable reduction of 60 percent in

throat heat transfer will cause a big reduction in the estimated wall temperature there.

This reduction must be associated witl_ what is happening to the flow within the throat,

and large flow accelerations are known to occur in the vicinity of the throat.

A heat-transfer experiment in a low-speed, two-dimensional air tunnel conducted by

Moretti and Kays at Stanford showed that acceleration would reduce heat transfer appre-

ciably. Moretti and Kays air tunnel is shown schematically at the top of figure rt/-4.

One wall of the two-dimensional tunnel could be varied to provide the flow acceleration.
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Heat-transfer measurements were made on the cooled opposite wall.

stream velocity and Stanton number are plotted against distance along the tunnel. (The

Stanton number is a function of the heat-transfer coeffic)ent. ) Flow velocities'for a typi-

cal run were about 60 feet per second before the flow acceleration and about 180 feet per

second following the acceleration. The measured Stanton number drops during the flow

acceleration to a value about 50 percent of the calculated value. Following the flow accel-

eration, it recovers to the calculated value.

The obvious question at this point is why does acceleration reduce heat transfer.

Moretti and Kays suggest that acceleration reduces turbulence in the boundary layer and

lowered heat transfer is assQeiated with lowered turbulence. They cite visual experi-

ments in a water tunnel using a dye-tracer technique. These observations appeared to

show that acceleration reduces turbulence in a boundary layer.

Another weU-known situation where acceleration reduces turbulence is in the wind

tunnel. Prandtl and more recently Deissler and others have developed analyses which

predict this reduction of turbulence in the free stream as the gas is accelerated toward

the throat. Obviously the turbulence in the main stream of the tunnel may be significantly

different from that in the boundary-layer being considered here. Nevertheless, some

estimates have been made of the effect of acceleration on the turbulence in Moretti and

Kays' boundary layer by using Deissler's methods for wind tunnels. The dashed curve in

figure HI-4 is such an estimate. The estimated and observed reductions of heat transfer

agree well. Based upon this observation, a major portion of the relative reduction of

heat transfer at the throat of a rocket nozzle could be caused by the turbulence reduction

that accompanies acceleration.

The accelerating forces acting on a boundary layer influence not only the turbulence,

but other properties of the boundary layers as well. In particular, the velocity profile of

a boundary layer Is sensitive to :aeceleration, as is shown in figure m- 5. A normal tur-

bulent boundary layer is shown on the le.ft side of the figure, where y is the distance

from the wall and u is the local velocity. The velocity profile is approximated by a

power-law equation, as shown on the right side of the figure, where U is the free-

stream velocity and 6 is the boundary layer thickness. The value of n for the usual

turbulent boundary layer is near 7. If a sizeable accelerating pressure gradient is ap-

plied, the profile is stretched into the shape on the right side of the figure, and the value

of n might be 20, 30, or higher. The man on the figure represents the accelerating

force that distorts the equilibrium boundary layer profile shown on the left side of the

figure.

Measured profiles of accelerated boundary layer. - Boundary layer profile measure-

ments have been made at this!aboratory in a rocket-type nozzle using heated air (see

fig. HI-6). The measurements were made in the accelerating flow region upstream of

the nozzle throat. The distance from the wall is shown against the local to free stream

In this figure, free-
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velocity ratio. The measured profile for the accelerated flow is considerably steeper at

the wall than the nonaccelerated profile, much in the manner described previously. Mea-

surements like these of the profile shapes and the thicknesses of the velocity and temper-

ature layers help the input to the so-called integral boundary layer prediction technique.

However, the predicted heat-transfer rates are still substantially higher than those ob-

served at the throat.

Other influences and gas-side summary. - The effects of acceleration on turbulence

and on velocity profiles and their possible effects on heat transfer have been discussed.

Other things are happening in the rocket nozzle, which are not considered in the usual es-

timation of heat transfer. In a highly accelerated boundary layer, the usual direct analogy

between velocity and temperature profiles no longer holds. (This analogy is called the

Reynolds' Analogy.) The curvature of the walls cause centrifugal effects in the boundary

layer that may influence heat transfer. These and other effects are being investigated at

Lewis and elsewhere. The important experimental observation is that the throat heat-

transfer coefficient is approximately 60 percent of the predicted value (see fig. HI-3). If

a 30 ° convergent angle nozzle is to be designed, the Bartz Simplified correlation should

be multiplied by 0.6 to estimate the throat heat flux.

In summary, a major portion of the reduction of heat transfer at the throat below the

expected value is believed to be caused by flow acceleration effects, which include re-

duced turbulence and altered boundary layer profiles.

Coolant Side Heat Transfer

The problem of cooling the wall is not the lack of heat capacity in the fluid but how to

force the heat into the coolant. In fact, there is only a comparatively modest bulk tem-

perature rise across the nozzle because the entire propellant supply is available for cool-

ing the nozzle. This is significantly different from the chemical rocket where only the

fuel is used for regenerative cooling, and it experiences a large temperature rise. The

hydrogen coolant will be considered in its high pressure condition. Figure HI-7 is a

phase diagram of hydrogen shown with temperature-entropy coordinates. The narrow

shaded region above the saturation line is the operating region for the coolant in a

NERVA-type engine. Pressures of 800 pounds per square Inch absolute or higher put the

fluid state out of range of some of the near-critical effects that cause problems with heat-

transfer correlations. The engine diagram in figure ]II-1 shows that the coolant is flow-

ing at high speed and is being turned rapidly at the throat. Both the straight and curved

sections of the coolant passage will be discussed with emphasis on the curvature effects

at the throat•

Straight tube results. - Helpful information on convective heat transfer to liquid
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hydrogen has come from research experience with straight tubes. Electrically heated

straight tube experiments for this fluid state regime have recently been conducted at

Lewis. In figure 11"I-8 the results of these experimentsare--_--_ shown as a p!otof "^Nuf/Pr_"
4

as a function of Ref. The data appear to correlate we! 1 when a 0.02 ! l'me of the Nusselt

film correlation is used. This is the same correlation used for perfect gases.

The question arises as to whether this straight tube correlation would be applicable

to the straight portion of the cooling passages of a nuclear rocket. It is assumed that it

would apply wherever the conditions of heat flux and wall- to bulk-temperature ratios

were the same. However, in the nuclear rocket, because of the relatively low bulk tem-

perature rise, the wall- to bulk-temperature ratios can be very high (i. e. on the order

of 20). In the chemical rocket theywouldb e lower. Although it would be desirable for

these higher wall- to bulk-temperature ratios to be studied in tic fully developed flow

portion of electrically heated tubes, conditions like these are difficult, if not impossible,

to simulate. No claim can be made for the correlation shown in figure 111-8 above these

conditions and the correlation is expected to change for higher heat flux or higher wall-
to bulk-temperature ratios.

Curvature effects. - The effect of curvature on the heat transfer into the coolant will

be considered next. Figure Hi:9 iliustrates some el ectricaUy heated _b e results con-

ducted with a 0.2-inch-diameter tube with a radius of curvature of 4.25 inches. The ex-

perimentally determined heat:tran-sfer coefficient divided by the calculated coefficient for

straight tubes (evaluated at film conditions) is plotted against angular position around the

bend. Heat-transfer rates of more than two times that obtained in a straight tube were

measured on the outside of the tube bend. The corresponding values on the inside of the

bend were about 20 percent below those of the straight tube. The reason that the values

at the beginning of the curvature are above the straight tube values is because of entrance

effects. A longer heated length ahead of the curve d portion of the tube would be required

to minimize these entrance effects. Theenhancement in heat-tr_fcr coefficient on the

outside bend of the::_be (which forms the nozzle throat) is attributed to the strong density

gradients and secondary flows set up within the tube as a result of turning the high-

velocity coolant flow.

Other effects. - Another effect that may be present in the rocket nozzle tubes but not

in the electrically heated tube experiments is surface roughness. Other experimenters

have noted enhancement in heat transfer caused by rough surface conditions of the rocket

nozzle tubes. In addition, effects such as asymmetric heating, heating in varying area

passages and heating to higher values of wall- to bulk-temperature ratios are being

studied. Considerable _Perimental work is required to evaluate these effects that may

be important in the real nozzle tubes of the rocket engine. The largest effect on the cool-

ant side coefficient at the throat, namely curvature, is emphasized.
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RevisedEstimatesof Wall Temperature

From thls enhanced cooling in the curved section of the cooling passage at the throat

wall another benefit that reduces the local wall temperature was derived. If this benefit

is added to the reduced heat flux from the gas side, the previous pessimistic estimate of

wall temperature at the throat (fig. m-2) is significantly altered. As an example, a com-

parlson of three different gas side temperature distributions along the length of the nozzle

is given in figure Ill-10. These distributions are all for the NERVA NRX-A3 nozzle whose

contour is shown in the upper part of the figure. The reactor end is at the left followed by

a 45 ° convergent angle, an 8.72-inch throat diameter, and a 17.5 ° divergent angle. The

nozzle is convectively cooled and consists of an AISI 347 stainless steel U-shaped coolant

passage brazed into a 347 stainless steel pressure shell. Curve I is the same pessimis-

tic temperature distribution as shown previously with temperatures in excess of 2600 ° R

at the throat. Curve 2 results from applying what has been learned about the reduced

heat transfer on the hot gas side. This curve indicates a reduction in peak temperatures

of about 350 ° R. If the knowledge about the effect of curvature on the coolant side, the

effect of inlet conditions, and the possible effect of high wall- to bulk-temperature ratios

is applied, curve 3 results. Examination of the primary region of concern, the throat re-

gion, indicates that the peak temperature has been reduced some more and is now down to

1750 ° R, a more reasonable maximum operating temperature. All these predicted tem-

peratures are for the NERVA NRX-A3-EP-IV hot-firing condition, 3780 ° R and 568 pounds

per square inch absolute. This test was a successful operation of both the reactor and the

nozzle; thus credence is given to the assumption that wall temperatures were more nearly

in the vicinity of curve 3.

Although the application of the various heat-transfer effects to calculations of wall

temperature might change the designer's thoughts of potential failure to thoughts of anti-

cipated safe operation, wall temperatures by themselves are not the sole criterion for

predicting either a successful engine firing or a failure. However, a reasonably accurate

prediction of wall temperatures is required for any structural analysis.

Structural aspects. - An insight into the structural aspect of nozzle operation can be

achieved by examining the mechanics of deformation of the nozzle coolant tubes during

steady-state operation. As is portrayed in figure III-11, this deformation is applicable

to a tube-and-shell type nozzle, such as the NERVA nozzle. The stiffer and stronger

shell is considered to govern the movement and restraint of the thin-walled coolant tubes.

The hotter tubes expand more than the shell but are restrained with a deflection force

resulting. The upper half of the figure shows the final result of what this does to the

coolant tube. The region of greatest concern is the tube crown and at this location an

elastic tangential stress can be calculated. This tangential stress is composed of the

bending stress resulting from the bending moment imposed by the deflection force, the

membrane stress due to both internal pressure and the deflection force, and the biaxial
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thermal stress due to the temperature gradient across the tube wall.

The orientation of this tangential stress is shown in the three-dimensional view in

figure HI-12. This orientation is indicated by the arrow in the circumferential direction

and is calculated at both the inside and outside of the coolant passage wall. Shown in the

figure is the U-tube configuration of a NERVA nozzle coolant passage. In addition to the

tangential stress there is also the longitudinal stress that is caused primarily by the large

temperature difference from the hot gas side to the cold shell side.

Note the range of calculated stresses that results from using the temperature distri-

butions shown in figure lII-10. Shown in figure III-13 are the inside and outside tangential

stresses as well as the average longitudinal stresses. The numbers on the stress curves

correspond to the similarly numbered temperature curves in figure IH-10.

These stresses are plotted as a function of the nozzle length, just as the temperatures

were. The inside tangential stresses are at the toP of the figure. For the most part they

are all compressive stresses as indicated by the minus sign on the ordinate. The peak

value at the throat for curve 3 is about -80 000 psi, while that for curve 2 is almost dou-

ble that. The peak outside tangential stresses are about the same magnitude, 80 000 psi

at the throat, for curve 3, but these are now tension stresses. The longitudinal stresses,

shown at the bottom, are compressive stresses and range up to -300 000 psi.

The yield strength of this material is about 20 000 psia at 1500 ° R and 10 000 psi at

2000 ° R. Comparing these strength values with those shown for the inner and outer tan-

gential stresses shows that yielding apparently occurs and that the greater portion of the

nozzle operates in the plastic range. The calculated longitudinal stresses indicate that

the entire length of the nozzle operates in the plastic range with values considerably

higher than those of the tangential stresses. Presumably, the usual concept of designing

to an allowable stress below the yield strength of the material is not possible.

The calculated values of elastic stress were shown to emphasize the extent to which

the material is operatingabove it.s elastic limit. This indicates the reIativelylarge

amount of strain that would exist and dramatically points out the need for a material with ....... -_

a high value of ductility. This high ductility value is required to prolong th e low-cycle, ............

high-strain fatigue failure that would occur.

Tube buckling. - Another factor associated with tube yielding is the aspect of tube

buckling similar to that which occurred on some of the earlier nuclear nozzle firings.

Figure HI-14 shows rather simply how this buckling occurs. The thin-walled tube has to

expand on the hot side while the cold back side might even contract. For the actual oper-

ation the effect is the same as a constraint being imposed on this expansion with the ex-

cessive strain resulting in the formation of a buckled tube for severe conditions. This

buckling occurred in the regions indicated in the bottom sketch of figure IH-14.

The buckling can be analyzed by applying the assumption that a nozzle tube under a _

thermally induced strain behaves like a tube under uniaxial compression. Utilizing avail-
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able analyses for buckling of thin shells modified for plastic buckling gives the critical

stress that would produce buckling as a function of the geometric parameters of the tube,

namely the ratio of the tube radius to the tube wall thickness. This radius-thickness fac-

tor can then be related to a critical buckling strain. Under the operating conditions being

discussed, buckling can usually be avoided through control of the geometry.

The high temperatures that produce high stresses, however, are difficult to reduce

by geometric control because of limitations on minimum tube size and feed system deliv-

ery pressures. For the present, however, the nozzles are apparently operating satisfac-

torily despite indications that they are operating near their upper limit.

Techniques for upgrading nozzles. - Reactor engineers feel that reactor power could

be increased without major changes in reactor design. If the required conditions were

the same as those required to investigate the uprating of reactors, the present nozzles

may not be capable of operating successfully. One method that would allow present noz-

zles to operate beyond their apparent limit is the use of coatings on the hot gas side. The

use of coatings in a high-temperature environment has been relatively successful, but

their application in convectively cooled tubular nuclear rocket nozzles has not been inves-

tigated. Shown in figure 1T[-15 is an indication of the potential gains for applying a coat-

ing to an existing nozzle. Again, calculated temperatures are plotted as a function of

length for the same nozzle shown previously in figure lII-10. The conditions chosen are

for the NERVA NRX reactor operating at twice the power rating and at 5000 ° R and

960 pounds per square inch absolute.

Applying a coating with a thermal resistance of 100 (sec)(in. 2)(°R)/Btu causes the

maximum temperature to be reduced to 1750 ° R while the coating is operating at 3100 ° R.

This temperature reduction is within the capabilities of coatings that have thermal resis°

tance values of 100. Such coatings could be produced by about 4 mils of zirconia or 8 mils

of alumina.

This large reduction in metal temperature by the use of a coating may indicate that

nozzles should be designed to utilize this advantage; however, some unanswered questions

exist, which only a development program could answer. For example, the very large

temperature drop, about 1300 ° R, across the thin coating layer may cause excessive

cracking, which could lead to the loss of the coating in sections. To safely utilize a coat-

ing for the initial design, a definite knowledge of the operating characteristics of a spe-

cific coating would be required; however, a coating application to an available nozzle does

present the potential for extending the useful operating range of the nozzle.

Summary of Steady-State Operation

For steady-state operation, cooling the nozzle is apparently a difficult heat-transfer

problem. Fortunately, flow acceleration effects on the gas side and curvature on the
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coolant side collaborate to reduce the severity of the heat load.

TRANSIENTSTARTUP

This rocket engine gets to its steady-state operating point 0nly by going through a

starting transient. The startup transient operation includes some challenging heat-

transfer aspects. While there is no critical cooling problem, the heat transfer has a di-

rect influence on pressure drop, which is one of the most significant variables in the
transient.

In the discussion of steady-state0peration, the propellan(w-as at high pressure, four

or five times critical pressure, but in the Eransient startup entirely different fluid state

regimes exist at low pressure.

Startup Mode

For the startup discussion, the entire nuclear rocket engine, which comprises the

nozzle, reflector, and core, will be considered. An unfueled configuration similar to

that shown in figure III-1 was tested in an altitude simulation facility at _the Lewis Plum

Brook station. _.... --

Before considering data from startup tests, the ......... : .....conditions in the engine when flow is

initiated will be discussed. Initially, the components of the engine (i. e., the nozzle, re-

flector, and core) are essentially at ambient temperature. When flow is started, liquid

hydrogen from a storage tank is transferred through a feedline to the engine. For the

first few seconds the sensible heat in the feedline causes vaporization of the liquid hydro-

gen so that the flow entering the engine is gaseous. As flow continues, the hardware up-

stream of the engine is chilled down, and two-phase hydrogen moves into the nozzle tubes

and eventually penetrates the f=low passages in the reflector.

In startup, therefore, both gas and two-phase flow in the nozzle and reflector must

be considered. For the region of interest during startup, only gaseous hydrogen flows

through the core. With the chilldown the pressure, flow rate, and the temperature of the

components are changingsimultaneously. As a consequence, the state of the fluid

changes with both time and location in the engine. =

In order to predict pressure drops in the nozzle, reflector, and core during a s_art-

up, the surface temperatures of the flow passages in the individual components at each

point in time throughout a chilldown must be estimated. Thus, predictions of pressures

in the engine are strongly dependent on estimates of heat transfer from the relatively hot

components.

To distinguish the operating range encountered during startup with that of steady ....

state, refer again to the temperature-entropy diagram for hydrogen (fig: :_TIT' 16i. :The
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two-phase dome is shaded. Recall from the steady-statediscussion thatthe hydrogen

statewas in the supercriticalregion, well above the two-phase dome. In startup,the hy-

drogen stateisbelow the criticalregion, and the fluidstatechanges with time.

Heat Transfer in Startup

If a point in the region, such as the nozzle tube inlet, is considered and if the state of

the hydrogen during startup is traced, the fluid would be observed to change from a super-

heated gas and to approach a saturated liquid state; that is, with increasing time, the

change is from right to left along the dashed trace shown in figure TTT-16. This trace indi-

cates that in startup two fluid regimes axe of concern, the gaseous and the two-phase

(liquid-vapor). Adequate gaseous hydrogen correlations have been in the literature for at

least 7 years. They are essentially correlations of the familiar Nusselt number-Reynolds

number type.

This two-phase region shown in the temperature-entropy diagram was investigated at

Lewis by the use of uniformly heated test sections.

The heat-transfer characteristics should be examined for one of the research runs

that comes close to simulating an instantaneous hydrogen state in the nozzle cooling pas-

sages. A realistic typical condition for the nozzle would be to assume that the hydrogen

enters in a subcooled state and exits as a vapor after absorbing the residual heat of the

nozzle. The heated-tube run in figure I_-17 conforms to these inlet-exit conditions. The

local measured heat-transfer coefficient and the estimated local quality are shown as a

function of the tube length. Note that the local heat-transfer coefficient falls rapidly in

the subcooled region at the tube entrance and then rapidly climbs when the fluid is satu-

rated.

The flow model is assumed to be annular flow with a predominately vapor layer adja-

cent to the wall and liquid in the core. This model is portrayed in figure HI-18. The

vapor annulus is assumed to be laminar at the tube entrance. As the thin laminar gas

layer at the entrance thickens, the heat-transfer coefficient drops off drastically (see

fig. HI-17). The annular flow becomes turbulent after quality develops, and the annulus

becomes a turbulent mixture of liquid droplets and vapor. Some of these droplets im-

pinge on the wall, and hence cause the increased heat transfer in the portion of tube where

quality is developing.

Since this is a forced convection process, the conventional Nusselt-Reynolds number

plot, in which an average density of liquid-vapor mixture was assigned, was used in an at-

tempt to correlate the data. The Nusselt number did not correlate well with the Reynolds

number, probably because of the complication of droplet evaporation at the wall.

Another approach was to determine if the heat transfer in a Nusselt parameter could

be related to the local fluid friction of a two-phase annular flow. Certainly, the turbulent
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mixing process of the liquid droplets with the vapor must be related to the interfacial

shear. Martinelli worked out a two-phase frictional parameter for isothermal annular

flow. As is portrayed in the following equation, two-phase frictional pressure drop has

been correlated by multiplying the gaseous pressure drop by a function involving two pa-

rameters, gamma and chi:

(1)

where _ is the hydraulic diameter andvelocitY slip parameter and Xtt is the shear re-

sistance parameter for turbulence in both phases and is given by

Xtt =

. tion has found wide use in startup heat-transfer analyses.

Gamma corrects for the hydraulic diameter and the slip velocity between the phases.

Chi is the Martinelli parameter which comprehends the two-phase shear. Chi is the pa-
rameter of interest. The variable x is quality, or percent vapor by mass, p is density,

p is viscosity, and the subscripts v and _ refer to vapor and liquid, respectively.

The Martinelli parameter was derived originally by assuming an annular flow, which

was liquid adjacent to the wall and a gas core, the inverse of this flow model. Martinelli's

derivation for the gas annulus - liquid core model was repeated, and the parameter came

out with the:same terms, which represent the shear at the interface and at the wall.

As is shown in figure nT-19, an attempt was made to relate the Nusselt number ratio

to Martinelli's two-phase shear parameter Xtt. The reference Nusselt number was com-

pated from a Nusselt-Reynolds equation for forced convection by using an averaged den-

sity, as described earlier. Low values of Xtt represent a predominance of gas, and

high values, a predominance of liquid. The correlation groups most of the data within

.+20 percent. Note that the Nusselt ratio exceeds unity where the fluid is mostly gas.

This enhancement is attributed to the continued presence of droplets that vaporize at the

wall.

The convective film boiling correlation represented by figure WI-19 is a tool that en-

ables the heat-transfer rates with two-phase hydrogen flow to be estimated. The correla-

|
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Pressure Dropin Startup
T

Prediction cede. - A general technique (or procedure) used to calculate pressure
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drops and heat-transfer rates in a component in the engine is illustrated in figure IXI-20.

Consider some component in the engine system, which may be either the nozzle, the

reflector, or the core. From measurements, a history of the inlet fluid conditions

throughout a transient chilldown run was obtained. The inlet conditions are time depen-

dent and include the following: flow rate, pressure, fluid temperature, and in the case of

the nozzle and reflector, an estimated inlet fluid quality, or density. These measured

inlet conditions are used in a transient digital program to compute the pressure, fluid

temperature, and quality at the exit of the component.

A simplified block diagram of a digital code used to analyze the pressure drop - heat

transfer characteristics of an engine system component is shown in the lower part of the

figure. These measured inlet conditions are used along with a transient conduction sub-

routine, a pressure drop - heat transfer subroutine, and a hydrogen properties subroutine

to predict outlet conditions and material temperature distributions within the components.

The predicted values of temperature and pressure are then compared with experimental

(or measured) values.

Comparison with experiment. - Some data from a typical test run conducted in the

Plum Brook facility will now be examined. The experimental data and data comparisons

are for a single liquid hydrogen test run. This particular test had the steepest flow ramp

of all the tests run in the Plum Brook test facility. The flow rate for this run was in-

creased from 0 to about 28 pounds per second in the time span from 0 to 12 seconds.

The experimental pressures at the four major stations in the engine plotted against

time are shown in figure m-21. In the early part of the startup, for times less than

3 seconds (for this run), the hydrogen entering the engine is gaseous at low pressure,

and the major portion of the pressure drop in the engine occurs in the nozzle coolant

tubes. As the chilldown progresses, the reflector becomes the major resistance to flow,

and in the later portion of the run the pressure difference between reflector inlet and core

inlet amounts to as much as 60 percent of the overall pressure drop in the engine. The

pressure drop in the core is seen to increase gradually throughout the run. For this test

run, as well as other runs made in the Lewis-Plum Brook facility, the hydrogen flow en-

tering the core was gaseous.

An attempt will now be made to predict pressures in the engine during a simulated

startup. Beginning with the nozzle, some comparisons will be made of measured and

predicted pressures in components of the engine for the particular test run considered.

Shown in figure m-22 is a plot of static pressure against time for the nozzle, and a com-

parison of the measured and predicted pressures at the nozzle tube outlet. As indicated

in the figure, the hydrogen entering the nozzle tubes changed from gas to two phase at

about 3_2 seconds after flow was
4

initiated.

A quasi-steady-state digital program, similar to that described in the previous block

diagram (fig. III-20), was used to calculate pressures at the nozzle coolant tube outlet.
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The measured inlet pressure, a measured flow rate, and an estimated inlet fluid density

were used as input to the digital code. The Calculated (or predicted) pressures at the noz-

zle tube outlet are shown against time by the solid line.

As indicated in the figure, for thetime span from 0 to about 8 seconds the calculated

and measured pressures at the nozzle tube outlet are in reasonable agreement. For times

between about 8 and 12 seconds, the calculated pressure drops across the nozzle tube are

about two times the measured pressure drop.

The rather large difference between the calculated and measured pressures at the

coolant tube outlet in this time span is believed to be caused partly by an overestimation

of the heat transfer from the countercurrent flow of warm gas onthe inside of the nozzle.

From published data of Other two'phaSe experiments: :the Martine!li tw0-Pl_ase pressure
drop relations that were used in the analysis appear to have a tendency to overestimate

the frictional pressure drop for two-phase flow. In the later portion of the test run, the

pressure drop across the nozzle tubes was primarily due to friction. Therefore, this too

may partially explain the difference between the calculated and #xperimental pressure

drops near the end of the run.

For the reflector figure ]I1-23 shows a similar comparison of calculated and mea-

sured pressures at the reflector outlet. For this test run the fl0w entering the reflector

changed from gas to two phase at about 4.5 seconds. Because of the large reflector mass,

the hydrogen flow at the reflector outlet was gaseous throughout the 12-second run time;

that is, even though the flow at the reflector inlet was two phase for times greater than

4_2 seconds the heat pickup in the reflector caused a transition from two phase to gas flow

at some point inside the reflector. As a result, the hydrogen flow at the reflector outlet

was a superheated gas throughout the test run.

A quasi-steady-state digital code, Similar to that described, was used to calculate

the pressures at the reflector outlet. For this run, the calculated and measured pres- _

sures at the reflector outlet are in reasonable agreement throughout the test run.

Of the three major components in the nuclear rocket engine system, the core appears

to be the easiest to analyze during a chilldown transient. A single tub e flow model was ................

used to estimate the pressure drop - heat transfer characteristics of the core for several .........

of the startup test runs. In general, the predicted and measured values of pressure

drops for the core were in good agreement. For the particular test being considered,

the predicted pressure drops across the core were within about 10 percent of the mea-

sured values.

These pressure calculations look reasonably accurate, but this is only a part of the ........

problem. Fluid and material temperatures must be estimated also. In general, our pre-

dicted and measured values of fluid and material temperatures in the core assembly were

in good agreement. As mentioned before, the hydrogen flowing through the core is in a

gaseous state. In the nozzle and reflector, however, some significant differences were

89



observedbetweenthe calculatedandmeasuredlocal material temperatures of these com-

ponents, especially during the time period in which the hydrogen flow is two phase.

Thus far in the transient discussion, individual components of the rocket engine,

where the inlet conditions are experimental, have been considered. The question arises

concerning the ability to predict overall pressure drop starting with known conditions at

the nozzle inlet only. When the calculated and measured overall system pressure drops

are compared for the run shown, the estimated values are found to be as much as 30 per-

cent larger than the measured values. In general, the predictions of pressure drop are

high, but it is felt that they could be improved. A part of the difference between predicted

and measured values may be caused by nonuniform fluid inlet conditions to the parallel

cooling passages of the components, especially when the hydrogen flow is two phase.

The effect of nonuniform inlet fluid conditions on pressure drops in parallel cooling chan-

nels is discussed in paper IV (STARTUP DYNAMICS AND CONTROL).

SUMMARY

In this discussion some of the heat-transfer problems that relate to the startup and

steady-state operation of a nuclear rocket engine have been discussed. The scope of this

discussion had to be limited to a few topics, and time permitted only a highlighting of the

topic material. As was seen from the discussion of the startup transient, heat-transfer

knowledge is important in assessing the transient pressure drop characteristics of the

engine components. The nozzle and reflector appear to be the most difficult components

to analyze because of the presence of two-phase flow in complicated multipassage geome-

tries. There is some difficulty in adding up the pressure drops of the individual compo-
nents into an overall estimate.

In the transient phase there are no apparent problems in cooling the system compo-

nents. For the steady-state operation, the crucial heat-transfer problem lies in the

marginal regenerative cooling of the nozzle throat. Two phenomena help the situation.

First, the effects of flow acceleration appear to reduce the hot gas heating load in the

throat. Second, concave curvature in the throat region of the cooling passage enhances

the coolant heat transfer.

The final decision concerning the reliability and integrity of the nozzle is a strength-

of-materials decision. Heat-transfer researchers are sometimes enamoured by correla-

tions of heat-transfer coefficient and heat flux, but for a design the correlation must be

able to give an accurate prediction of wall temperature.

Introduced into the discussion was reference to the problems associated with making

decisions regarding strength and reliability of the nozzle coolant passage material.
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IV. STARTUP DYNAMICS AND CONTROL*

Herbert J. Heppler, Jr., Benjamin H. Colmery,
James J. Watt, and Vernon D. Gebben

Various components of nuclear rockets are discussed in the paper on PROPELLANT

FLOW SYSTEM COMPONENTS and the paper on HEAT TRANSFER AND FLUID ME-

.CHANICS. A useful propulsion system requires the integration of these components into

a single entity whose operation is harmonious and controllable. Some of the Lewis ef-

forts in system investigations and control development are presented in this paper. Spe-

cific attention is given to flow system startup characteristics and two-phas_e hydrogen

flow characteristics. In the controls area, the application of pneumatic components, or

fluidic devices, is discussed.

NUCIEAR-ROCKETCOLD-FLOWSTARTUP

Benjamin H. Colmery

INTRODUCTION

z

A nuclear-rocket engine in space probably will use no special startup equipment; it

will rely on a "bootstrap" technique starting procedure. Run-tank pressure drives hy-

drogen propellents through the flow system. The liquid hydrogen acquires heat from the

engine components, and a portion of the heated hydrogen is bled to the turbine. This bleed

gas powers the turbine, which in turn accelerates the pump increasing the flow _dpres-

sure through the system. Successful bootstrap results in a continuous increase of system

flow and pressure.

The bootstrap technique has been used successfully to start chemical-rocket engines,

but there are significant differences in the nuclear-engine bootstrap. One difference is

the much longer time for the nuclear rocket to be brought to power. Also, all the propel-

lant is utilized, and it follows a more complex hydrogen flow path in the nuclear rocket.

These factors coupled with the lack of precise knowledge of two-phase hydrogen flow and

boiling phenomena caused concern as to whether unacceptable flow perturbations might
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occur during bootstrap startup. Further, there was uncertainty as to whether enough

energy could be delivered to the turbine at low pump speeds to cause flow acceleration.

Also, there was the usual question of unanticipated problems in new hardware.

Therefore, a full-scale test of the bootstrap startup of a nuclear-rocket engine was

undertaken - the first such test ever made. The Nuclear-Rocket Cold-Flow Test Facility

used (fig. IV-l) is located at the Plum Brook Station of the Lewis Research Center. The

altitude exhaust system shown enabled maintaining a rocket-nozzle-exhaust pressure of

nominally 0.5 pound per square inch absolute throughout each run. The rocket engine

was mounted in the 130-foot-tall structure at the right in a down-firing position.
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SYMBOLS

cross-sectional flow area, ft 2

heat-transfer area, ft 2

specific heat of wall material, Btu/(lb)(°R)

diameter of flow passage, ft

acceleration of gravity, ft/sec 2

heat-transfer coefficient, Btu/(ft2)(°R)(sec)

fluid enthalpy, Btu/lb

turbopump moment of inertia, (ft-lb)(sec)/rpm

loss coefficient

choked-nozzle flow coefficient, (ft2)(°R)l/2/sec

fluid thermal conductivity, Btu/(ft)(°R)(sec)

pump torque, ft-lb

turbine torque, ft-lb

mass of wall material, lb

turbopump speed, rpm

fluid pressure, lb/ft 2

component pressure drop, lb/ft 2

fluid Prandtl number

nozzle chamber pressure, lb/ft 2

pump pressure rise. lb/ft 2



Pti
Pto

t+ Re

T

Tn c

T s

Tt i

T w

v
W

AW

wn

wt
AX

P

turbine-inlet fluid pressure, lb/ft 2

turbine-outlet fluid pressure, Ib/ft 2

heat addition from surroundings, Btu

gas constant, ft/°R

fluid Reynolds number

fluid bulk temperature, OR

nozzle chamber temperature, °R

saturated-fluid bulk temperature, OR

turbine-inlet fluid bulk temperature, OR

wall temperature, OR

time, sec

volume of lump, ft 3

weight flow, lb/sec

empirical weight flow storage, lb/ft 2

nozzle flow, lb/sec

pump weight flow, Ib/sec

turbine weight flow, lb/sec

length of lump, ft

fluid density, Ib/ft 3

+

+

SYSTEM DESCRIPTION

A schematic diagram of the rocket-engine test package is shown in figure IV-2, and a

photograph of some of the hardware is shown in figure IV-3. The test hardware consisted

of a turbopump assembly, unfueled reactor, and a supersonic exhaust nozzl_e. The liquid-

hydrogen run tank, which feeds the pump, has a capacity of 2000 gallons and has a servo-

controlled pressurizing system. An 8-inch-diameter line, which is equipped with a

turbine-type flowmeter, connects the pump to the run tank.

The turbopump assembly consisted of a Rocketdyne MARK-IX turbopump, turbine-

power-control valve, and turbine bleed line. The liquid-hydrogen pump is composed of an

_ axial-flow stages, and a single-outlet collecting volute.

=__

.--%

. +. + - •
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axial-entrance mixed-flow axial-discharge inducer stage, six identical high-pressure

The pump is designed for opera-



tion with liquid hydrogenandis capableof providing theflow rate andpressure require-
mentsof a NERVAtype engine.

Theturbine is a six-stage pressure-compoundedaxial-flow unit designedfor opera-
tion with hot or ambienttemperaturegaseoushydrogen. Theunit wasdesignedto deliver
15000horsepowerandis capableof deliverying NERVApowerrequirementswith ambient
temperaturehydrogen.

Thepumpdischargesinto a 4-inch-diameter stainless-steel flight-weight feedline
equippedwith a servocontrolledbutterfly valveusedfor flow control. Approximately
18feet downstreamfrom the mainflow-control valve, thepropellant line is divided equally
into three 2_-inch-diameter ductsthat feedthe nozzleinlet manifold.

The regenerativelycooled(liquid hydrogen)tubular-wall nozzleutilizes single-pass
cooling. The liquid hydrogenenters thetubesthroughthree equallyspacedinlet connec-
tions on the manifoldandflows towardthe reactor end.

Ondischargingfrom thenozzlecoolanttubes, thefluid enters the reflector inlet man-
ifold section of the reactor assembly. From there it passesthroughthe reflector compo-
nentthat is composedof the inner graphite reflector, anouter aluminumreflector, simu-
lated aluminumcontrol rods, andthealuminumpressurevessel. Thefluid thenenters
the reactor core; flowing throughthe manyparallel coolantpassagesin the unloaded
graphite reactor core.

The warm hydrogenemergesfrom the core into the regenerativelycoolednozzle
thrust chamberwhere most of it is exhaustedinto thefacility vacuumexhaust(0.5 psia).
A small portion of thefluid, however, is bled bya 3-inch-diameter bleedport, turbine-
gasbleed line, andservocontrolled turbine-power-control valve, to the turbine. Alto-
gether, the rocket-enginesystemtestedwasa full-scale modelof whatmighthavebeena
flight version of a system using the Kiwi B-1 reactor.

One objective of this startup program was to determine the bootstrap capability of the

nuclear-rocket engine for a range of tank pressures and the influence of two-phase flow

and pump stall on the startup. A second objective was to develop an analytical technique

that would dynamically simulate the startup and be useful as a general tool to predict

startup characteristics.

E×PERIMENT PROCEDURES

Two kinds of experimental runs were undertaken: cooldown and bootstrap. The cool-

down tests were undertaken to examine the problems of boiling and two-phase flow. In

these runs, the pump was chilled to liquid-hydrogen temperatures. Then, at zero run

time, the pump-discharge valve (fig. IV-2) was opened, and run-tank pressure forced

flow through the system to the facility vacuum exhaust. The run was continued until the
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engine components had cooled and flow had stabilized. Unlike later bootstrap tests, the

turbine-power control valve was kept closed throughout the cooldown run. Hence, it was

possible to examine the two-phase flow and boiling instabilities without the additional com-

plications of turbopump-load interactions and the dynamics associated with a rapid in-

crease in flow and pressure. Ten cooldown runs were made with run tank pressures of

25, 35, and 50 pounds per square inch absolute.

In the bootstrap runs, the pump was chilled to liquid-hydrogen temperatures, and at

zero time, the pump-discharge valve was opened and flow was established in the system.

The turbine-power-control valve was opened at run times varying from 0 to 10 seconds

and was controlled by various schemes to maintain desired pump acceleration. The run

was continued, generally, until peak values of pump speed, weight flow, and pump pres-

sure rise had been achieved. To date, 15 bootstrap runs have been made.

RESULTS AND DISCUSSIONS

Cooldown Tests

Three cooldown tests corresponding to run-tank pressures of 25, 35, and 50 pounds

per square inch absolute are shown in figure IV-4. The time history of the static pres-

sure at the nozzle ¢9ol_n_!_et shows two types of oscillations. There is an initial tran-

sient with a nominal disturbance frequency of about 2 cps, which is called initial surge.

A second mode of oscillation, called two-phase-flow perturbations, follows with an ini-

tial frequency of about 15 C_PS_ .................

The initial surge was an expected phenomenon. Undoubtedly, it is the result of the

introduction of liquid hydrogen at cryogenic temperature into a pipe at ambient room tern-=

perature. When the hydrogen flashes into vapor it produces the pressure surge. The

phenomenon occurred as soon as the pump-discharge valve was opened , and it died away

in about 2 seconds. It originated in the lower part of the pump-discharge line as a pres-

sure disturbance; this disturbance proceeded upstream and downstream from the point of

origin and was closely followed by corresponding changes in hydrogen weight flow and

fluid temperature. The initial surge, which occurred on both the cooldown and the boot-

strap runs, died away with an oscillation frequency of about 2 cps. The initial surge

was the largest flow-system perturbation encountered.

Normalized peak surge amplitude is plotted against run-tank pressure in figure IV-5.

The initial peak pressure is sensitive to run-tank pressure with the higher tank pressures

attenuating the pressure surge. Also shown in the figure is an unexpected effect - an ap-

parent dependence on the weight of the pump-discharge-line flanges and gimbals, as indi-

cated by the two curves.
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Theflangesandgimbalson the pump-dischargeline were changedafter the first
12test runs. Boiler-plate-weight flanges(about31 lb each)were replacedby flight-
weight flanges(about3 lb each), andlighter gimbalswere used. Thereplacementhard-
ware wasmadeof the samematerials as theold. The internal dimensions and finish

specifications were unchanged, and the piping was not changed - only the flange and gim-

bal mass were changed. Prior computations and intuition indicate that the smaller heat

capacity of the smaller mass should have negligible effect on heat transfer in the pump-

discharge line during the first few seconds of hydrogen flow; hence, it was anticipated

that the change in mass would not affect the amplitude of the initial surge.

A possible explanation of the existence of two curves in figure IV-5 is the effect of

vibration on the heat-transfer coefficient for fluid flow in a pipe. Literature exists on the

interaction between vibration and heat transfer which indicates that lateral oscillations of

a pipe containing flowing hydrogen substantially augment the heat-transfer process under

some conditions (ref. 1, p. 133). The pipe with the lighter flanges could vibrate with

higher lateral velocities. The largest velocities would result sequentially in more fluid

turbulence, larger heat transfer, a larger rate of vaporization of liquid hydrogen, hence,

a larger pressure surge.

Because the phenomenon was unexpected, the pump-discharge line had not been in-

strumented for vibration. Hence, verification of the foregoing hypothesis has not yet been

made.

The second kind of disturbance (fig. IV-4), termed two-phase-flow perturbation,

commenced about 2 seconds after flow initiation. The two-phase-flow perturbations were

found to originate as pressure disturbances, and these pressure disturbances were trans-

mitted upstream and downstream from the point of origin.

The pressure disturbances were accompanied by flow and temperature changes. The

flow changes occurred out of phase with the pressure disturbances. Temperature varia-

tions of the fluid were observed at a given point until the hydrogen temperature reached

saturated liquid temperatures at that point; subsequently, flow and pressure disturbances

continued, but temperature oscillations were no longer apparent.

As shown in figure IV-4, the amplitude of oscillations appears unaffected by run-tank

pressure, but the duration of the oscillation is shortened with higher tank pressure.

Bootstrap Capability

Results of a typical controlled bootstrap run are shown in figure IV-6. The upper

curve shows the pump operating map. The pump stall line is depicted as a band, because

of hysteresis effects of entering and leaving stall, and because of uncertainties in the pre-

cise location of the stall line at low pump speeds. The lower curve shows pump speed as
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a function of time. PointsA andB in bothfigures correspondto the samepoints in time.
This test run is termedcontrolled becausea closed-loopcontrol system wasusedto
maintaina desired rate of pumpacceleration.

-: Events in the run occurred asfollows: At zero time, the pumpmetal hadbeenchilled
to liquid-hydrogentemperature andthe pump:dischargevalve wasopened. As flow was
initiated, there were sharppressure surgesin the regionsdownstreamof the pump-
dischargevalve. Thesurges were followedby rapid pressure oscillations at a frequency

_: of about 15cps, similar to thoseobtained:in-'t_l_e_cool}iownruns. TheSe-oscillationshave
beenomittedduring thefirst 6secondsof the run in the upper curveof figure IV-6. The
pumpinitially windmilled to point A becauseof the liquid hydrogenflowing throughit,

-_ forced by tankpressure.
_ At 6 seconds,point A, the turbine-power-control valve wasopenedandcommanded

to achievea pumpaccelerationof 200rpm per second. It canbeseenin the lower curve
of figure IV-6 that this accelerationwasquickly achievedandheldsmoothly. In the upper
curve (fig. IV-6) buildupof pumppressure rise andof hydrogenflow occurred. There
were pressure andflow disturbances,-but they were small. The operatingpoint skirted

_ the stall region, reachedanoperatingpe_ in flow andspeedat aboutpoint B, andthen

-- fadedback to the origin. ........
Thepeakat point B occurredbecausetheturbine-inlet fluid energybecameinsuffi-

_=_ cient to continueacceleratingthe turbGpump.This fluid energyt acquired from the latent
heat energy of the engine components, decreases as the system cools. In an actual flight

startup, nuclear power would have become the dominant energy source somewhere between

times A and B, and the bootstrap acceieration would have continued to the desired system

operating point.

Figure IV-'/shows data from a typical uncontrolled bootstrap test plotted on the pump

5_--: operating map. This run is called an uncontrolled run because both the pump-discharge

_ valve and the turbine-power-control valve were opened fully at zero run time and kept

fully open until the end of the run. This uncontrolled bootstrap gave the fastest increase

in pump speed, flow, and pressure, and it also gave the largest flow disturbances. Ini-

tially, there were rapid appreciable variations in flow and pressure. The pump wind-

milled for a few seconds until adequate power arrived at the turbine to cause it to accel-

erate. Then there was a rapid buildup of pump speed, pressure, and flow.

The initial flow and pressure disturbances were damped during the bootstrap accel-

eration. The pump entered the stall region. Flow and pressure oscillations were ob-

served that continued until the pump left the stall region. Nevertheless, bootstrap con-

tinued, and the pump acceleration was nearly constant at 1150 rpm per second. Maximum

__=:- values for pump speed, pressure rise, and flow (10 000 rpm, 100 psi, and 30 lb/sec, re-

spectively) were achieved in about 12 seconds; theseare apprec_able*_values of the rated ...............
Kiwi B-1 operating pointl ....... ' : :

_ T=:

111



Thetests describedby figures IV-6 andIV-7 showthat, neglectingweightlessness
andthe complicationsintroducedby nuclearoperations,a bootstrapstart couldbeacaom-
plished. They showthat appreciablevaluesof pumpspeed, liquid-hydrogenflow, and
pumppressure rise couldbeachievedbyusing latentheatof the enginecomponents(at
ambientatmospherictemperatures), andthat peakvaluescouldbebuilt up in as little as
12seconds.

In tests not illustrated, it wasalso shownthat bootstrapruns couldbesuccessfully
accomplishedat a run-tank pressure of 25poundsper square inch absolute. Thelower
the run-tank pressure, the lower the overall tank weight; hence,insofar asthe bootstrap
operationis concerned,it appearsthat lighter weighttanks mightbeused.

Operational Problems

Several system and equipment operating problems were encountered during the runs,

and an interesting one is shown in figure IV-8. The interest arises because of the erro-

neous appearance that the severe oscillations were simply a result of the system opera-

ting point being accelerated into the pump stall region. In fact, the oscillations were the

result of gas ingestion.

The axial pump used counteracts axial thrust with a balance piston. A bleed line

from the region of the balance piston had been installed to empty upstream of the pump

inlet. In post-test analysis, it was found that during cooldown, a check valve prevented

the bleed line from being fully chilled to liquid-hydrogen temperature. Hence, when the

pump acceleration occurred, the bleed line discharged gas rather than liquid into the

pump inlet.

The bleed line was modified to enable complete cooling, and the run of figure IV-8

was repeated under otherwise identical conditions. The result is shown in figure IV-9.

It is clear that removal of the bleed-line heat source removed the oscillations. The two

figures also illustrate what might happen if gas were entrained in the liquid that leaves the

run tank during bootstrap.

Other operational problems encountered were straightforward, correctable ones in-

volving cryogenic temperatures or random equipment malfunctions.

Analytical Simulation

The goal of an analytical effort at Lewis has been to develop a mathematical model to

simulate the nuclear-rocket-engine startup. The system was studied by dividing the model

into spacial lumps, each representing a specific hardware component of the research
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apparatusshown in figure IV-2. These lumps can then be grouped, as in figure IV-10,

into a system block diagram composed of a pump, feed line, nozzle coolant tubes, re-

flector, core, thrust nozzle, turbine bleed line, turbine-power-control valve, and turbine.

The lumping was done in this manner to take advantage of system geometry and data

probe locations and also to limit the amount of necessary analog computing equipment.

The state of the fluid varies throughout the system during the course of a run. With

liquid hydrogen flowing into the system, the material of the components begins to cool by

giving up latent heat to the fluid. Throughout every experimental run, it was observed

that a definite, but changing, portion of th e system c0ntained tw0:phase fluid. The pre-

ceding portion was aI!!iqutd, while the remaining portion downstream was all gas, as

illustrated in figure IV-11. As the run proceeded and the system cooled, the two-phase

section moved downstream.

During the time of simulation, the range of the fluid state was specified for each

lump; all liquid in the pump, the possibility of liquid, two phase, or gas between the feed

line inlet and the reflector exit, and all gas throughout the balance of the system.

The differential equations describing each lump were written and then programmed

on the analog computer. For purposes of presenting the system equations, they can be

grouped into those pertaining to the turbopump assembly and those concerning the load.

TurbopumpAssembly

As stated earlier, the turbopump is a MARK-IX axial-flow liquid-hydrogen pump and

six-stage turbine. This unit is described by the following equations:

APp = N2fl_N--_/ (1)

Lp N2f_N--_ ) (2)

= 30 (Lt (3)dt _rI - Lp)

(N T Pto_ (4)

= Wtf3 \' ti' Pti_)

113



\Pti/J N
wt = _4_ (_)

Equations (1) and (2), the pump-head-rise and torque-characteristic equations, respec-

tively, are empirically derived from the manufacturer's rated speed operating data and

from experimental low-speed data. The balance of the equations was generated from a

more theoretical basis, namely, from torque and momentum considerations.

As stated earlier, the turbine is powered by a controlled flow of gas that is fed

through the turbine bleed line from the nozzle thrust chamber. The representation for

this bleed line is adequately described by the all-gas-lump equations presented in the fol-

lowing section.

Load

The load segment of the model was broken into five major spacial lumps: feed line,

nozzle coolant tubes, reflector, core, and thrust nozzle. In general, the equations for

each lump are as follows: the conservation of fluid mass, the conservation of fluid mo-

mentum, the conservation of fluid energy, the conservation of thermal energy of the ma-

terial parts, Newton's law of cooling, and the fluid state properties. The written forms

of these equations are, respectively,

dR _l (Win - Wout ) (6)
dt V

dW-_x(Pin_Pou0 K W2 l(W2ut W2n_
"in/

(7)

dh_ 1 d[L__W(hout _hin) 1
dt pV

(a)

dTw_ (MCp)- 1 dQ (9)
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T_=_:-_]_i

+ ,:,Q= +)
d'-[" KAht

(10)

P = fs(p, h) (ii)

T=fd(p,h) (12)

For an all-gaslump, the general equations (6)to (12)apply directlywith the follow-

ing qualifications:First, the fluidtemperature (eq. (12))was assumed to be a function

only of the fluidenthalpy. Second, the pressure relation(eq. (11))was modified intothe

more conventionalgas law:

• +++ + _+ ++]}f-+YE :: _ +_+::> _::+_TT " :;-_++ _: _++ _ ÷_:-C++: +

And finally,the heat-transfer coefficientused in equation (10)was

.: +

H + 0.0'1 I pr0' 33Re0"+++_T_0" 575 (14)/gJ
=

For an all-liquid lump, the general equations (6) to (12) also apply directly, if the

appropriate heat-transfer coefficient is assumed, In addition, the fluid-temperature

state equation (eq. (12)) can be simplified if saturated liquid hydrogen is assumed:

@

T = fT(P) = T s (15)

Theoretical!y,the general equations (6)to (12)could be used for a two-phase lump if

homogeneous flow and thermodynamic equilibrium between the phases are assumed. A

pressure state re_t{on:(eq. (1i)) has been derived :from existing two-phase-properties

tables, andthe fluqcl:temperat_re-_State would be that of saturated liquid hydrogen

(eq. (15)). Becauseof the complexities and uncertainties in arriving at a two-phase pres-

sure loss coefficient K_d a tw0:phase heat-transfer coefficient H, experimental data

were used to modifyempir!callythe momentum equation (eq. (7)) and the heat-transfer

equation (eq. (10)). In the case of the heat-transfer relation, a correlation of the form in

figure IV-12 was derived from experimental data and found to be an adequate representa-

tion for the overall average heat transfer in a two-phase lump.

However, in an analog simulation employing these two-phase equations, the fluid-

pressure relation (eq. (1i))proved to be too cumbersome for practical use. Therefore,

a more convenient form of the state relation, one relating the two-pl'u_e density to the
:--:

+_:-++:
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pressure andenthalpy(eq. (16)), wasused. Unfortunately, the utilization of this equation
necessitatedalternate forms for the conservationequationsof massandmomentum(eqs.
(6) and(7)) The modifiedequationsare as follows:

P = f8 (h, P) (16)

Wou t = Win - AW (17)

p V \Pout Pin/J

Note the missing derivatives of density and weight flow in equations (17) and (18), re-

spectively. The lack of a convenient expression relating pressure to a function of density

and enthalpy forced dropping these derivatives. In turn, the flow dynamics that are char-

acteristic of the two-phase lump were thus removed. Detailed investigation has shown

that this two-phase dynamic response is a necessary factor in determining low-frequency

system dynamics. Hence, the model as presented herein must be considered a quasi-

steady-state simulation.

Thus, the system load consists of a thrust nozzle plus four lumps, modeled after

the gas described previously, liquid, or two-phase representations. Within a fraction of

a second after flow initiation, the gas side of the nuclear-rocket nozzle may be considered

choked at the throat. The choked, isentropic nozzle weight flow is given by

Pnc

Wn = Kn r------

 Tnc
(19)

Simulation of the previously discussed controlled and uncontrolled bootstrap tests are

presented in figures IV-13 to IV-16. In the first case, the pump speed was controlled in

such a manner that the pump stall was avoided, while in the second case, the system was

accelerated in an uncontrolled manner with no attempt made to avoid the stall region.

For the controlled bootstrap tests, after a 6-second period of pump windmilling, the

turbine-power-control valve was opened and bootstrapping commenced. There were ini-

tial flow oscillations but they were damped out as bootstrapping proceeded. The system

operating point steadily increased to a maximum pump pressure rise.

The simulation was initiated 5 seconds after the start of the experimental run because

of the range limitations of the analog computer. Most of the initial oscillations had died

out by 5 seconds; those remaining, however, could not be duplicated by the model because
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of the missing two-phase dynamic terms. The steady-s/ate level approximated the pump

map data (fig. IV-13) and the parameter-time data (fig:._l_r-!4); the simulated pump cor-
_- rectly operated out of the stall region during the-ent_ire-computer run.

The second run was an uncontrolled bootstrap test. It was uncontrolled because the

_ turbine-power-control valve was opened fully at the beginning of the test and kept fully

open until the end. The initial flow oscillations were once again damped out as boot-

strapping commenced. Stall-induced flow oscillations were observed during a portion of

the run as the system bootstrapped through stall to a maximum pump pressure rise and

L weight flow. - actual experimenThe simulation of the second test began: 3seconds after the tal sys-

tem startup. The simulated pump entered and operated in the stall region, but the ana-

_ lytical model was unable to produce the staii-induced flow Oscillations, as indicated in

figure IV-15. The parameter-time data is presented in figure IV-16.

For beth tests, the model matched the experimental data for most parameters to
_ _i within 10 to 25 percent of the measured quantities. The only exceptions to this are the

turbine weight flow and certain other parameters that disagreed in the initial low level

_--- portions of the runs.

- CONCLUSIONS

The conclusions drawn from the experimental bootstrap startup operations conducted

to date have the qualifications that nuclear operations and weightlessness were not in-

cluded, and that there are a number of boiling and two-phase-flow phenomena that still

are not explained: With theseq_fficat(0ns, it can be stated_hat ............. _ .....................................

bootstrap operation was perform sf lly. ................... ..... _- __:_: 1. The ed succes u )kppreciable percentages of

g-conditions of syst m fl w rat , p essu s and pump sPeed were 'the rated operatin e o e r re ,
_-.7. . : r ....................

_ achieved.

_ 2. Bootstrap was accomplished successfully at a run-tank pressure of 25 pounds per

square inch absolute; this may have-important implications on run-tank weight.

3. Flow disturbances encountered would not cause concern about the practicability of

a nuclear bootstrap startUp on a flight mission.

A quasi-steady-state model has been developed to simulate a nuclear-rocket cold-

flow system. In general, the experimental data were matched to within 10 to 25 percent

of the measured values. The effort demonstrated that a complex system , such as a

-_ nuclear-rocket engine, may be simulated with a fairly simple model. It has demonstrated

L the necessity for including two-phase flow dynamics. The quasi-steady-state model paves

the way for more detailed studies in the areas of two-phase fl0w dynamicsl heat transfer I

r and friction pressure drop.
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ANALYSIS OF HYDROGENFLOWCHARACTERISTICSAT

SUBCRITICAL PRESSURES

James J. Watt

INTRODUCTION

Some highlights from a program conducted at Lewis to provide support for the de-

velopment of the nuclear rocket in the area of component heat-transfer and flow analysis

are described. Only two phases of the reactor operating spectrum were considered, the

startup and after-cooling phases, both of which involve hydrogen at subcritical pressure.

TRANSIENTANALYSIS

For startup analysis, the two-phase and gas flow regions were considered. Correla-

tions for local heat transfer and pressure drop were included in a transient-analysis pro-

cedure. The purpose of the .procedure is to predict as a function of time in a given engine

component the following conditions: fluid pressure and temperature profiles along the

length, depth of two-phase penetration, wall temperature profiles both axially and longi-

tudinally, and flow distribution when parallel passage components were considered. Input

to this transient procedure included the geometry and material properties of the component

and the initial distribution of material temperatures. Input provided as a function of time

during the transient were the flow rate, inlet fluid pressure, and inlet enthalpy. A quasi-

steady-state approach was used in flow analysis, that is, flow and heat-transfer conditions

were defined periodically during the transient, and the changes in material temperature

were calculated on the interval between flow calculations.

Chilldown experiments were performed on single and multiple channel test sections

that simulated conditions in the reactor components during the startup transient. Liquid

hydrogen flowing from a pressurized supply tank was introduced into test sections initially

at room temperature. Flow continued until the test section was chilled to near liquid hy-

drogen temperature. Figures IV-17 to IV-19 are photographs of three test sections used

in chilldown experiments. A single tube 55 inches long with a 0.75-inch outside diameter

and a 0. 188-inch inside diameter is shown in figure IV-17. A five-passage test section is

shown in figure IV-18, and a 33-passage test section representing 1/24 of a nuclear-rocket

reflector annulus is shown in figure IV-19. Tests were performed in an evacuated enclo-

sure to reduce the convective heat transfer from the outer surfaces of the test sections.

The experimental flow rate and test-section-inlet conditions along with the initial
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material temperature distribution were then used as input to the transient-analysis pro-

cedure. The usefulness of this procedure was then evaluated by comparison of predicted

and experimental results.

The results of some of the earlier experiments are included in reference 2 (p. 133).

The results of applying the transient-analysis procedure to the reflector during the full-

scale nuclear-rocket bootstrap startup tests performed at the Lewis Plum Brook Station

are presented in paper TTT. A more complete description of the transient-analysis proce-

dure and a comparison of its predictions with experimental results obtained from chill-

down experiments on a single tube (fig. IV-17) are the subject of a current investigation

(unpublished data obtained by F. C. Chen0with, J:J. Watt, and E. L, b-_prague of Lewis).

A comparison of single-tube chilldown experimental results with predictions illus-

trates the current status of transient analysis. The measured wall temperatures along

the length of the test section are indicated at 3.0, 8.0, and 13.0 seconds during a chill-

down run in figure IV-20. The solid lines are the predicted temperature profiles. Before

zero time, the test section had a nearly constant wail temperature of 522 ° R. At zero

time, liquid-hydrogen flow was started into the test section. The thin-walled 3-inch-long

dip tube at the inlet chilled rapidly. Because there was no temperature instrumentation

until the 7-inch station, the accuracy of prediction in this region cannot be evaluated.

There is a dip in the predicted wall-temperature profile that occurs at the point of transi-

tion from two phase to all gas in the flow passage. The length at which this transition

occurred is indicated by the dashed veritical lines for each time. _ The tip or disparity in

predicted wall temperature increases in both amplitude and length with time. Further in-

to the all-gas region, it may be noted that good agreement between predicted and experi-

mental wail temperatures was obtained.

The reason for the dip in predicted wall temperatures is indicated in figure IV-21,

where the heat-transfer coefficients predicted by the two-phase and gas correlations 11.0

seconds after the start of a chilldo_ run are plotted. Heat is being transferred from the

wall to a two-phase fluid for the first 13 inches and to a gas for the remainder of the pas-

sage. As shown in figures IV-20 and IV-21, the peak heat-transfer coefficient occurring

near the end of the two-phase region causes the dip in predicted wall temperatures, and

the decrease in heat-transfer coefficient at the transition to gas (38 percent, in this case)

causes the sharp increase in wall temperature. The minimum of the dip lags the two-

phase to gas transition point because of time history effects as the two phase penetrates

progressively further into the passage during the chilldown

These disparities occur in a region that requires a research effort. The two-phase

correlation used (ref. 3, p. 133) was based on an experimental effort that considered

qualities less than 0.8. The gas correlation (ref. 4, p. 133) was based on experiments

performed with bulk temperature far removed from saturation temperatures. The dis-

-- parity, therefore, occurs at the intersection of two extrapolated correlations.
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Heated-tubeexperimentsperformed with hydrogen gas at temperatures near satura-

tion temperature (unpublished data obtained by H. J. Gladden and J. J. Waft of Lewis)

have indicated that there is a bulk temperature effect on gas heat transfer. These exper-

iments also indicated a strong increase in heat-transfer coefficient near the entrance of a

passage when velocity and temperature profiles develop concurrently.

In summary, the transient-analysis procedure is a useful tool for predicting the gen-

eral characteristics of flow and heat transfer in passages that contain boiling hydrogen.

There are local limitations because conditions occur where current correlations for heat

transfer are not directly applicable. These limitations become significant ff thermal-

stress calculations are to be performed, based on predicted material temperature profiles.

PARAMETRIC STUDY

A system model developed for the cold-flow startup of the nuclear rocket was dis-

cussed in the previous section. This model includes the characteristics of the pump,

turbine, nozzle, control valves, and reactor. Its weakness was in the areas related to

two-phase hydrogen. For purposes of heat-transfer and flow calculations in the model,

a series of single passages was used to simulate the flow system. In order to include the

two-phase hydrogen heat-transfer and flow characteristics in the model, it was necessary

to test the system to gain empirical characteristics. The usefulness of this approach is

thus limited because system analysis cannot be performed until the system of interest is

built and tested.

A parametric study was made which demonstrates that the overall characteristics of

each of the components in a given system could be analytically predicted and that these

characteristics could be expressed as functions of fundamental variables over the range of

interest. The flow-calculation portion of the transient-analysis procedure (discussed in

the TRANSIENT ANALYSIS section) was utilized for the parametric study. The flow cal-

culation procedure evaluates instantaneous steady-state conditions. Continuity is satis-

fied, but this procedure does not contain the terms required for a dynamic analysis. The

parametric study was also performed to provide more insight into the general character-

istics of a system containing boiling two-phase hydrogen.

Basically, three parameters change with time during a bootstrap startup: flow rate,

wall temperature, and depth of two-phase penetration. The change in depth of two-phase

penetration can be considered for a given component as a change in inlet quality. A

single-flow passage representing the reflector is illustrated at the top of figure IV-22.

The influence of the three parameters (inlet quality, flow rate, and wall temperature)

on the heat transferred to the fluid passing through the channel is shown by the three

curves for the range of interest in startup (fig. IV-22). It may be seen that the overall

heat transferred to the fluid Q increases almost linearly with increase in flow rate per
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unit flow area G, and also with increase in wall temperature. As the heat transfer Q

is nearly independent of changes in inlet quality, figure IV-22 suggests that q in a por-

tion of the system containing two-phase hydrogen might be expressed as a function only

of G and wall temperature.

Correlations for overall heat transfer for the reflector and for the pump-discharge

line are shown in figure IV-23 as functions of G and Twall - Tliquid. Points for the re-
flector were generated by performing a series of steady-state calculations over the range

of conditions expected during startup; wall temperatures from 100 ° to 500 ° R, inlet quali-

ties of 0 and 0.4, and three flow rates. The points form a straight line and the equation

for the line is

Q = 0. 00123 G O. 8(AT - 30)

where AT = T__I, - T ....... and T .... is the saturation temperature for the inlet
w_t_ _LqULU llqUlCl

pressure. The reflector is an efficient heat exchanger in the sense that the passages are

long and the ratio of heat-transfer surface area to flow area is large. Even with satura-

ted liquid entering the passage, boiling occurred quickly under most conditions, and the

predominate heat-transfer mode was from_he wall to a gas.

The correlation for the pump-discharge line took the form
J

Q = 0.82xI0-4G 0" 8(AT)2

F-

!_ii:

This line, 20-feet long and 4.3 inches in diameter, had comparatively little heat-transfer

surface area. For the range of conditions considered during startup, the two phase pene-

trated the entire length. The difference between the correlations for the reflector and

pump-discharge line is a-r-esuitpr[marily of the fact that the heattransfer was-predomi'

nately to a gas in the reflector and predomtnately to two phase in thepump-discharge line.

The form of the equation for the discharge line is somewhat surprising, but it merely re-

flects the characteristics of the local two-phase correlation (ref.: 3,: p. :i33) as applied

to the given geometry and conditions toobtain an overall correlation.

The pump-discharge line of the full-scale nuclear-rocket system at Plum Brook was

instrumented for heat'transfer studies. The solid points near the curve for the pump-

discharge line are experimental values obtained during bootstrap tests. The agreement

with the open symbols (calculated points) is most encouraging.

The foregoing discussion indicates that if the single-passage-simulation geometry and

range of expected conditions for a component are known, the current prediction techniques

are adequate to be used in developing overall heat-transfer correlations for each lump of

a system. It also illustrates that the correlations can be expressed as a function of G

and AT. Correlations for the pressure drop in a lump or portion of the system were
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found to be more complex functions of the three parameters.

The influence on the pressure profile in a typical reflector passage of changes in inJet

quality is shown in figure IV-24. The depth of two-phase penetration is indicated by a

film-boiling model in the upper figures for three inlet qualities Xtnle t of 0, 0.35, and

0.5. It may be noted that the lower the inlet quality, the greater the depth of penetration

into the passage.

The calculated pressures along the length for each of the inlet quality conditions are

shown in the lower portion of figure IV-24. The perhaps subtle but significant point of

this figure is that there is little change in pressure in the two-phase region but a signifi-

cant change in the all-gas region. Although there is a change in velocity as the hydrogen

evaporates, the forces are really quite small and the resulting pressure gradient is small

compared with the pressure drop occurring in the gas region where the fluid temperature

and viscosity increase as the pressure decreases. In order to define the pressure profile

in a component or a system, it is essential that the end of the two-phase region be well

defined. Not because of forces associated with boiling but rather that the significant pres-

sure changes occur in the all-gas region.

The influence of each of the parameters on the pressure drop in a passage is shown

in figure IV-25. All three parameters are shown to exert a strong influence on the pres-

sure drop as they are each varied over their expected range during startup. Whether a

quality of 1.0 or 0 is assumed entering the passage makes a difference of two to one in the

calculated pressure drop for the conditions of a constant wall temperature and flow rate.

Pressure drop is extremely sensitive to flow rate, as indicated in figure IV-25. Flow

rate is an especially difficult parameter to handle accurately during system analysis be-

cause of the storage of fluid at various points in the system. The nuclear-rocket system

at Plum Brook contained over 30 cubic feet of volume. With the system initially at 0.5

pound per square inch absolute, a significant amount of hydrogen is required to fill the

system during a bootstrap startup. For the first 5 to 10 seconds, the flow into the sys-

tem from the tank far exceeded the outflow from the nozzle throat, and it was 10 to 15

seconds before the outflow started to match the inflow (unpublished data obtained by D. M.

Straight, J. J. Biesiadny, J. G. Pierce, and G. W. Metger of Lewis). The time period

of this storage effect is dependent on the acceleration rate of the turbopump.

The wall temperature is also shown to have a strong influence on pressure drop.

This emphasizes the need, in system analysis, to remove the heat from the system com-

ponents accurately if valid simulation of pressure drop or pump load is desired.

The combined influence of inlet quality and flow rate is illustrated in figure IV-26

for the typical reflector passage. At low flow rates, there is little influence of inlet qual-

ity on the pressure drop. At higher flow rates, inlet quality becomes a sensitive param-

eter. The family of curves in figure IV-26 is for a wall temperature of 400 ° R. If a

higher wall temperature is assumed, the slope of all the constant flow rates will increase.
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For system pressure-drop analysis, computed families of curves relating the three pa-

ralneters to pressure drop could be provided for each component or lump in the system.

PARALLEL CHANNEL PROBLEM

Figure IV-26 brings out another problem in the analysis of two-phase flow. When

flow in parallel passages ts analyzed, it is assumedotl)at thefiota! flow wil_l be distributed
among the passages in Suc_a_way:-that each passage'_li have the same overall pressure

drop. This flow distribution will be a function of the geometry and surface temperature in

each of the passages. Figure IV-26 shows one passage and one wall temperature, but for

a given pressure drop, for example, a Ap of 25 pounds per square inch, there are any

number of possible flow rates that could occur depending on the inlet quality.

The problem may b e clarified bythe examp!eln figure IV-27. Two parallel passages

are utilized to simulate the reflector. First, two phase leaves the nozzle coolant passage

(sketch at the right of the figure) and is separated by turning into the reflector passages

at Pl" Liquid could enter the right passage and gas the left.
A curve for pressure drop as a function of total flow for the separated case is shown

at the left. This curve wa s developed bY assuming that the twopassages had the same
surface temperature and geometry. This assumption permitted obtaining points from fig-

ure IV-26. For an assumed pressure drop, flow rates for saturated liquid entering and

saturated gas entering were obtained. Summing these two flow rates provides a total flow

rate for the assumed pressure drop and therefore a point on the curve. By repeating this

process over a range of pressure, the solid line representing the separated case in figure

IV-27 was generated.

The curve for the mixed-case was obtained as foliows: From _e points used to gen-

erate the separated flow curve, an energy balance was solved to obtain a mixed mean inlet

quality. A pressure drop was then obtained which satisfied that inlet quality and total flow

rate. By repeating this process several times, the curve for the mixed or homogeneous

case was defined. _ _

As shown in figure IV-27, the mixed case always results in a higher calculated pres-

sure drop that could be considered as a maximum. The unmixed caseis not a minimum

because, if subcooled liquid and superheated gas were assumed, an even lower pressure

drop for a given total flow rate would result. The uncertainty in inlet conditions is an un-

resolved problem in the analysis of two-phase flow in parallel passages. No measurements

of either flow or inlet quality are available for the individual passages. The tendency for

separation of phases has been observed in multipassage component tests. Much higher

pressure drops than recorded experimentally have frequently been calculated. This is

traced in part to the assumption in the analysis procedures of perfect mixing.

To our knowledge, there have been no thermaI-stress-induced faiiures in either the
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nozzle coolantpassagesor the reflector dueto this separationof phases. Despitethis
success, if it is desired that reasonableheat-transfer andflow analysisbeperformed, it
is desirablethat future inlet plenumdesignsgive as uniform a quality distribution as pos-
sible.

Theresults of this parametric studyare summarizedby the followingpoints:
(1) Correlations for the overall heattransfer andfor the overall pressure drop may

be expressedin terms of fundamentalvariables for eachlump of the systemwhenthe lump
is simulatedby a single passage. Theoverall heattransfer maybe expressedas a func-

tion of G and AT, andthe overall pressure drop as a function of Xinlet, G, and AT.
(2) For a flow passage containing a region of two-phase hydrogen and a region of gas-

eous hydrogen, pressure drop in the two-phase region is small, but pressure drop in the

all-gas region is significant.

(3) For flow through parallel passages, separation of two-phase flow into liquid and

gas at the inlets to the parallel passages leads to difficult problems in the analysis of

pressure drop, flow distribution, and material temperature profiles.

FLOWAND PRESSUREOSCILLATIONS

"Initial surge" and "two-phase oscillations" were identified during the system tests

at Plum Brook and were previously discussed in this paper. Various modes of oscilla-

tions were observed during chilldown and heated-tube experiments performed at Lewis.

In the paragraphs that follow, four modes of oscillation observed during these component

tests are described. This information is presented as a matter of general interest and

represents our current interpretation of observed phenomena. Cataloging the modes is

hazardous at best because each mode is intimately related to the characteristics of the

system in which it occurs. A combination of visual observations and the interpretation of

continuous recordings of pressure, temperature, and flow rate were utilized in arriving
at these classifications.

Nucleation Source

This mode of oscillation was observed during heated-tube experiments. The model is

shown in figure IV-28(a). A glass section just before the heated section permitted the

observation of gas bubbles periodically approaching the heated length. The frequency of

the appearance of bubbles corresponded to the frequency of measured pressure oscilla-

tions.

Gas bubbles entering the boiling section increase the inlet quality. This in turn in-

creases the pressure drop through the boiling section as indicated in figure 137-25. The

increase in pressure drop in the boiling section causes a pressure rise at the inlet. This

decreases the rate of gas generation from the nucleation source. Thus, a periodic varia-
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tion in inlet quality results in oscillations in flow and pressure. A nucleation source re-

sulting from a heat leak to the flow line is used as an example here. Periodic gas genera-

tion (flashing) at a restriction before the boiling section can have the same effect. This

type of oscillation is seldom severe and can be removed by increasing subcooling of the

fluid approaching the boiling section.

Oscillation Source
--_i _. _ : ::

What is called an oscillation source is indicated as a chamber with a heat source off

the main flow line in f|gure IV'28(b). It frequently appears in the liquid portion of hydro-

gen flow systems. A real example might be the dead ended leg of a tee in the flow line,

or on a smaller scale, a pressure-transducer line. The chamber literally breathes in

liquid and breathes out gas. When liquidis breathed in, the flow to the boiling section is

reduced; when gas is breathed out, the flow rate and quality approaching the boiling sec-

tion are altered. The result is periodic flow and pressure oscillations. The amplitude is

related to the ratio of the flow in and out of the oscillation source to the through flow in

the line. The frequency decreases as the heat flow to the oscillation source is decreased.

This type of oscillation may be removed by providing a bleed port on the chamber to re-

move the gas.

Density Waves

This type of oscillation was observed during heated-tube tests. It would occur when

two-phase hydrogen penetrated the entire boiling length. As indicated in the model (fig.

IV-28(c)) two-phase hydrogen tends to for m aslug-mist-type flow mpde!. When these ....
slugs pass through a restricti°0n,-_the fiowcharacteristics change, and oscillations in pres-

__ sure tn the boiling section occur. Whts type of oscillation was observed and the term _.............
"density wave" was coined during work reported in reference 5 (p. 133). i

Initial Surge

The initial surge oscillations observed during component tests were perhaps less

complex than those observed during bootstrap tests because the system was cleaner andinterfaces were more clearly defined. The basic description of an initial surge may be

made with the aid of the model _in figure IV-28(d). The basic elements of the flow system

are a precooled length of line, a heated or boiling section, and a restriction in the gas

region. For simplicity in this discussion, the liquid-penetration depths at uniform inter-

vals of time are shown by dashed lines labeled alphabetically.
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At zero time (pointA) pressurized liquid is released into a low-pressure system.

Initially, in an attempt to fill the system, the liquid will penetrate too far into the boiling

section for stable conditions (point B). At this point gas is being generated faster than it

can be removed from the system through the line and orifice at the existing pressure.

The velocity (kinetic energy) of the liquid column is dissipated in pressurizing the gas.

At point C the liquid velocity is zero and maximum pressure is reached. Because the

pressure is greater than the supply pressure, the flow reverses to point D. The combina-

tion of effects, caused by the reversed liquid flow and the gas outflow through the restric-

tion reduces the pressure in the boiling section significantly below the supply pressure.

The liquid again penetrates deeply into the boiling section, and the cycle is started again.

Peak pressures 70 percent greater than supply pressure were observed in the boiling sec-

tion during chilldown tests of a 1/'24 reflector annulus shown in figure IV-19.

The flow system for those chilldown tests is shown schematically in figure IV-29.

The test procedure was to pressurize the tank and prechill the flow line to a point just

ahead of the reflector inlet plenum. When the line was thoroughly chilled to liquid-

hydrogen temperature, flow was directed into the reflector inlet plenum starting the chill-

down experiment.

With the aid of high-speed motion pictures, it was observed that the fluid would enter

the inlet plenum periodically. This periodic penetration of the liquid into the plenum was

related to pressure oscillations in the reflector. When the reflector pressure approached

its minimum value, liquid flowed into the plenum. The liquid boiled, and the pressure

then increased to values significantly higher than the tank pressure. This high pressure

forced the liquid back into the supply line. Boiling stopped and the pressure decreased,

thereby completing one cycle.

This oscillation results from an interaction of the inertia of the liquid column, the

compressibility of the gas, the boiling process, and the pressure-flow characteristics of

the exit orifice. The oscillation is started by the initial flow surge, and it is sustained

by periodic boiling.

The influence of the exit orifice size was investigated and is also shown in figure

IV-29. The smallest orifice caused the highest pressure peak and this occurred at the

lowest frequency. For the largest orifice, the pressure peak was negligible. This ex-

ample is a fairly simple illustration of the initial surge phenomenon because the boiling

can be expressed as a function of liquid position alone.

There are some conditions that tend to stabilize a system. In the upper model of

figure 1V-30, the liquid column contains gas bubbles. When oscillations involving strong

interactions with the inertia of the liquid column are considered, the presence of the gas

provides some compressibility in the liquid column tending to reduce the severity of the

oscillations. While this mechanism would tend to reduce the severity of the initial surge,

it could lead the system into the mode of oscillation related to a variation in inlet quality.
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Perhaps the most widely used stabilizing influence in boiling systems is indicated in

the lower model of figure IV-30. A restriction in the liquid region just before the boiling

section will nearly always stabilize a system. It does this either by isolating the inertia

of the liquid from the boiling process, or by making the amplitude of the two-phase oscil-

lations small in terms of the total pressure loss through the system.

This approach is difficult to apply to a transient case because the depth of liquid pene-

tration is changing with time making the restriction location a difficult problem. This ap-

proach also increases the pump work. As pointed out previously, flashing at the restric-

tion can lead to a mode of oscillation related to the nucleation source.

Summary of Oscillations

The oscillation-source and nucleation-source modes were primarily a result of per-

iodic variation in two basic parameters: flow rate and/or inlet quality. The strong in-

fluence of these parameters on pressure drop has been discussed previously. The den-

sity wave mode of oscillation is related to boiling primarily in the sense that it reflects

the periodicity of the slug-mist flow model as it passes through a restriction. The initial

surge mode could be considered as the seeking of a stable depth of liquid penetration that

would satisfy the overall applied pressure drop. The variation in boiling rate during this

seeking, acts as a forcing function. The significance or importance of each mode of os-

cillation is dependent on the system characteristics and operating conditions.

It has been the intent of this discussion to convey a physical explanation of the various

modes observed in terms of understandable parameters. Analytically it is not this simple.

Each mode involves a complex interaction of flow, heat transfer, fluid properties, and

system geometric characteristics. Analytical models of systems to evaluate the various

modes have met with 0nly limited success because of difficulties in simulation of charac-

teristics and weighting of the interactions.

CONCLUDINGREMARKS

Studies related to reactor aftercooling are not discussed in this paper. References

6 and 7 (p. 133) are listed as representative of Lewis effort in this area. Analysi_ of the

transient-flow characteristics in the laminar-turbulent transition region are being con-

tinued at Lewis (unpublished data obtained by R. W. Leko).
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FLUID CONTROLS

Vernon D. Gebben

INTRODUCTION

The nuclear-rocket engine is composed of two separable but interacting systems.

Energy is derived from a nuclear rocket that is controlled by neutron-absorbing material

on control drums located in the reflector. Hydrogen flows through the reactor absorbing

the heat generated and is expelled through a nozzle producing thrust. The system flow is

regulated by the turbopump Whose speed is controlled by the turbine-power-control valve.

The most significant control parameters for operating the engine are the chamber temper-

ature and the chamber pressure, which are indicative of specific impulse and thrust.

A simplified block diagram of a NERVA type control system is shown in figure IV-31.

The programmer provides the reference signals for the reactor-power and the system-

flow loops. The system controller contains comparators for measuring the difference be-

tween the reference signals from the programmer and the feedback signals, amplifiers

for high sensitivity, and compensators for stabilizing the system. Actuation servos are

used to position the turbine-power-control valve and the control drums. The chamber

pressure Pc and the chamber temperature T c are the controlled variables that are

measured for use by the system controller. Neutron flux signals q_ are available for

reactor startup and for quick reactor power control.

In the present control system, the elements are controlled by electrical signals, and

the actuation servos are electropneumatic servomechanisms. Another approach, under

investigation, is to use an all-pneumatic control system; that is, to replace electronic

circuits with pneumatic circuits and to use pneumatic control sensors. The pneumatic

supply would be hydrogen gas - the working fluid of the engine. In the pneumatic circuits,

fluid amplifiers are the counterpart for the transistors, line restrictors are the resistors,

and volumes are the capacitors. Integrated circuits can be fabricated by using techniques

analogous to the printed circuit used in electronics.

For the past 3 years, Lewis has been evaluating pneumatic components that could be

used to improve reliability without affecting the performance of the system. This paper

describes the operation of some of the fluid amplifiers that are being used in these de-

velopments and presents the status of this work.

FLUIDAMPLIFIERS

The fluid amplifier (also called fluidic and flueric) was introduced 6 years ago by the

Army's Harry Diamond Laboratories. Figure IV-32 shows the silhouette of passageways
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engravedin a block of material. Thefluid that flows throughthe channelsis gas, but
liquid canbeused. As illustrated, the high-pressure-supplyflow is deflectedto output
channel2. Thedeflection is causedbya low-pressure signal in control channel1. Like-
wise, the supplywouldbedeflectedto the other outputchannelwhentherpressure In con-
trol channel2 exceedsthepressure in control channel1. The flow from the outputs
wouldbedirected to the control ports of anotheramplifier or, possibly, to a motor. This
type of fluid amplifier canbebuilt to operateas either a bistableor a proportional ampli-
fier. In the bistableamplifier, the supplyflow is switchedfrom oneoutputport to the
other. In the proportional unit, the supplystream is dividedinto two outputsthat are re-
lated to the differential control signal.

Figure IV-33 illustrates someLewisdesignimprovements(ref. 8, p. 133). In this
unit, the control passagewaysinject the control flow in a direction alongthe supplystream
rather thanperpendicular, as shownin figure IV-32. This configurationpreventsover-
deflectionof the supplystream andtherebyproducesgoodsaturationcharacteristics.

Theside ventsprovide anotherfeature. SideventsA andthe center vent C improve
the performanceby increasingthe linearity andreducingthenoise tn the output. Side
vents B are designedto isolate the amplifier from the load. Operationof side ventsB is
illustrated in figure IV-34 wherethe amplifier is driving a piston. As shown,the supply
stream is deflectedto the lower outputpassagewayanddirected into the lower chamberof

the actuator. Thepiston movesupward. Thefluid dischargedfrom the upperchamber
flows back into the amplifier. This return flow is diverted out the side vent. If, however,
the amplifier did not havethis special vent, the return flow wouldbedirected into the
sensitive interaction region andwouldinterfere withproper operation of the amplifier.

Tests have shown that side vents B are very effective buffers for isolating the amplifier

from the load.

A photograph of one of our laboratory test models is shown in figure IV-35. This

model is approximately 4 inches long and 2 inches wide. The channels are 1/16 inch

deep. The width of the supply nozzle is 40 thousandths of an inch. This amplifier can be

reduced to one-third of its present size by using photoengraving techniques. Photoen-

graving techniques have been used to build amplifiers with materials of plastic, glass,

and metal.

One of the main features of this jet type of fluid amplifier compared with other fluid

amplifiers is its high-frequency response. Fluid logic circuits have been demonstrated

to operate with pulse rates of 1000 pulses per second.

Another important device in this field is the vortexam-pi{fier (illustrated in fig.

rv-36). It consists of two parts: a cylindrical chamber and a separate tube. The flow

enters the chamber through radial inlets for supply flow and through tangential nozzles

for control flow. The flow leaves the chamber through an orifice located at the center of

chamber end-wall. The flow leaving the orifice is collected by the receiving tube located
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a short distanceaway from the orifice. The flow that bypasses the tube is vented out.

The pressure and flow collected in the tube are the output of the amplifier.

First, consider the case where the control flow is zero. The supply flow entering

the chamber radially will flow directly to the exit orifice. The flow leaving the orifice

will be a jet that flows into the receiving tube. This condition of zero control flow gives

the maximum output; 95 percent pressure recovery and 95 percent flow recovery can be

obtained. High recovery results because the distance between the exit orifice and the re-

ceivtng tube is small.

When control flow is injected into the chamber, a vortex is generated. Consequently,

the flow leaving the exit orifice is rotational flow that fans outward as the result of cen-

trifugal forces. Because the flow from the orifice is conical in shape, the fluid will par-

tially bypass the receiving tube. The amount of bypass depends on the strength of the vor-

tex established by the control flow. With maximum control flow, all the fluid is vented.

This operating condition gives the minimum pressure in the receiving tube, and an output

pressure whose value is generally below the vent pressure.

In addition to the amplification characteristics resulting from the exit flow pattern,

the vortex amplifier also throttles the flow leaving the exit orifice. (The exit flow equals

the total of control and supply flows. ) In some designs, the flow leaving the exit orifice

is reduced by a factor of 8 when the control changes from zero to maximum flow rate be-

cause resistance to vortex flow is much higher than the resistance to radial flow. The

combination of throttling and diversion of the fluid leaving the exit orifice provides a use-

ful method for controlling power to a load.

Several other types of fluidic elements have been described tn engineering literature.

In general, each of these elements operates by a sensitive dynamic trait that controls the

flow pattern of the supply (main) stream. Some elements operate by controlling the

boundary layer, others use techniques that involve the control of fluid entrainment, turbu-

lence, momentum, and vortex flow.

These elements appear to be well suited for application on the nuclear rocket. They

can operate on hydrogen gas, have adequate frequency response characteristics, and can

be built rugged for operating near the engine.

Actuation Servos

The actuation servos for the turbine-power-control valve and the control drums have

been examined for possible improvements. The major components of the actuation servo

are shown in figure IV-37. The servo consists of two assemblies: a control assembly for

processing signals and an actuator assembly for power. The control assembly contains a

comparator for measuring the difference between the input and feedback signals, ampli-
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tiers for boosting signals, conditioners foi:stabilizing the system, and a speed limiter

for preventing the actuator from slewing [oo fast. In the second assembly, the servo-

valve provides the pneumatic power to the:m0tor, the motor m_tpulates the control drum ......

(or turbine-power-control valve), and the position sensor provides the feedback signal.

The control assembly, servovalve, and motor are three areas under investigation for im-

provements.

The new control assembly would use pneumatic circuits designed to tolerate the se-

vere environment of extreme temperatures and radiation. This assembly will be mounted

on the actuator assembly to form a single package instead of the two separate units re-

quired when electronics are used. The study phase of the contract showed that the servo

operated with fluid-amplifier circuits will have the performance equivalent to the present

electronic unit. The details on component sizes, amplifier requirements, and the

pressure-flow requirements are available in references 9 and 10 (p. 133). Most of the

components have been fabricated. Preliminary tests on portions of the compensation net-

works indicate that the required specifications can be obtained. =

The servovalve shown in figure IV-38 :operateS_without the use of moving mechanical : :

parts. This experimental model used vortex amplifiers for controlling the fluidp0wer. : :
It was demonstrated that this type could be designed for use in the control drum actuation

;= Of thtservos. Except for linearity and output stability, the performance s unit is corn-

parable to the flapper nozzle type presented used :on the NERVA actuators. Summary of

the performance characteristics are given in table IV-1. The final report (ref. 11, p. 133)

presents design details, test results, and suggestions for improving the performance.

A second-generation flueric servovaive is presently under development. This new

unit also uses vortex amplifiers for controlling the flow. Besides improving the linearity

and noise characteristics, it will have higher power gain and will incorporate dynamic

pressure feedback. This feedback provides virtual damping characteristics to the actua-

tor and thereby stabilizes the system. This servovalve is being designed to operate in

conjunction with the pneumatic control assembly.

The improved motor under development is the pneumatic nutator motor. This motor,

shown in figure IV-39, was designed for manipulating the control drums of nuclear-rocket

engines similar to NERVA. It is ideal for nuclear-rocket applications because it contains

no high-speed sliding parts that require special lubricants.

The motor contains a pair of bevel gears with an unequal number of teeth. The input

gear is attached to the housing by a gimbal ring and is driven by eight bellows. The gim-

bal ring allows the input gear to nutate (wobble) and prevents rotation. The output gear,

which is attached directly to the output shaft, is allowed to rotate but not to nutate. By

moving the point of force around the circumference of the input gear, the input gear will

nutate and its teeth will mesh consecutively with each of the output gear teeth. The out-

put gear has one less tooth than the input gear. Consequently, the output will be displaced
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by one tooth for each cycle of the input gear. The bellows that manipulate the input gear

are pressurized sequentially by a logic network of vortex amplifiers. A low-power pneu-

matic input signal controls the logic network, driving the motor in either direction.

The final report (ref. 12, p. 133) on this motor describes the operation and the test

results. Some performance deficiencies were noted with the prototype motor. The maxi-

mum output speed of 10 degrees per second and the maximum output torque of 235 inch-

pounds were too low. It should be pointed out, however, that low performance character-

istics were caused by the fluid logic circuits and were not the fault of the mechanics of

the motor. Improvements in the circuits are being developed. In general, the motor

operated satisfactorily and demonstrated feasibility for use in control-drum systems.

CONCLUSIONS

These investigations for improving the NERVA control system revealed some dif-

ficulties in designing new fluid-amplifier circuits. For example, fluid elements were

easy to demonstrate, but high performance circuits required extensive development.

Exact impedance matching within the circuit is very important and generally requires a

major effort to accomplish. Wave reflections can also create problems in high gain op-

erational circuits used in control systems. Results from our work and from develop-

ments under other government programs, however, do indicate that fluidic control sys-
tems are feasible.
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TABLE IV- 1. - SIGNIFICANT PERFORMANCE CHARACTERISTICS

Item Specified Measured

Supply pressure

Pressure recovery

Rated no-load output flow

Flow recovery

Quiescent supply flow

Input signal pressure

Input signal bias pressure

Input signal power

Differential input signal power

change for output pressure

change from -0.69x105N/m 2

to 0.69x105N/m2(-10 to 10 psi)

Linearity Gain maximum
Gain minimum

Output stability

Transient response

5.16×105 N/m 2 g air

(75 psig)

3. l×105N/m 2 g (min.)

(45 psi)

0.0113 kg/sec

(0. 025 lb/sec)

0.55 mln

0.0204 kg/sec (max.)

(0.045 Ib/sec)

2.75x105N/m 2 g (max.)

(40 psig)

1.38x105N/m 2 g (max.)

(20 psig)

30 W (max.)

5 W (max.)

3

5.16xl05N/m 2 g air

(75 psig)

3. lxl05 N/m 2

(45 psi)

0. 0131 kg/sec

(0. 029 lb/sec)

0.44

0.030 kg/sec

(0. 067 lb/sec)

i. 72x105 N/m 2 g

(25 psig) ,
1.17Xl05N/m 2 g

(17 psig)

55W

0.034x105N/m 2 (max.)

(o. s psi)
0.25 sec

5W

15

0.27x105 N/m 2

(4 psi)

O. 10 sec
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Figure ]V-i. - Nuclear-rocket cold-flowtest facility.
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Figure IV-3. - Cold-flowstartup test hardware.
CS-30164
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Figure IV-4.- Flow perturbations.
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Figure IV-ll. - Simplified model showing variation of fluid state

throughout system.
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Figure IV-12. - Form of empirical heat-transfer correlation,
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Figure IV-17. - Single thick
walledtube.
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Figure IV-19. - 1/24 reflector annulus.
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Figure IV-Y). - Pneumatic nutator motor.
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TUNGSTEN WATER-MODERATED NUCLEAR ROCKET

INTRODUCTION

The Lewis Research Center has been studying tungsten-matrix fuel elements at a

modest research level since about 1956. The early studies used lithium hydride and other

solid moderators for these thermal reactors. A switch to light water was made around

1958. By 1960, the concept of a tungsten water-moderated reactor was well defined. The

necessary research required to establish the engineering feasibility and the performance

of such a nuclear rocket system was then organized.

This program was accelerate-d::in lateClgBi-_ci:i962 by Dr: :_v6_t_and Mr.
- -_== .- ...... . - _;_[- -=-:=:-._o-.==.

Finger. A sizeable contract effort was initiated to augment the Center's in-house capa-

bilities. Answers were required to such questions as (a) can uranium be contained in

tungsten-matrix fuel elements, (lo)c_'fuei eiements be construc_ted-in=t=h_'-shapes re-

quired for optimum strength and heat transfer, (c) are the neutronics acce=ptable, (d) can

a reliable control system be included, (e) can the water moderator be cooled by the hydro-

gen propellant without freezing difficul_es-,:ii) whatwill the perform_=ce,-l_i-fetime, and .....

restart capability of such a reactor be,

_ and (g) can the tungsten water-moderated
_= _ HYD

_. _ HEAT

i,A

NOZZLE )

reactor (TWMR) demonstrate sufficient

performance gains over graphite to make

its development worthwhile.

The research and the technology

contributions that have been made to the

tungsten water-moderated reactor pro-
EXCHANGER

CS-)Q2D

L--

(a) Tungsten water-moderated reactor concept

gram are summarized in papers V to

MITT. Reasonable confidence now exists

that useful tungsten water-moderated re-

actors can be developed. Whether they

should be developed or not is beyond the

scope of the research-oriented activities

described herein.

Basically, the tungsten water-

: : ::::: " ::_ moderated reaCt_r:_is_t_erm_reac-tor ..... _ .... _:-

(sketch (a)). It utilizes water as the
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moderator, uranium dioxide as the fuel, and tungsten as the fuel element structural mate-

rial. As is common to all nuclear rocket systems, hydrogen is used as the propellant.

The reactor consists of a tank pierced by a number of pressure tubes which are attached

to tube sheets at the inlet and outlet ends of the reactor. The space inside the tank be°

tween the tubes is filled with water, which serves both as the moderator and a coolant for

the structure. Heat is generated in the water by neutrons and gamma rays and is also

transferred to the water from the hot fuel elements, which are located in each of the pres-

sure tubes. The removal of the heat is provided for by pumping the water through the

core and through a heat exchanger in a closed loop. The water is regeneratively cooled

in the heat exchanger by the hydrogen propellant, which flows from the supply tank through

the nozzle and heat exchanger into the core. As the hydrogen flows through the core and

over the fuel elements, it is heated to a high temperature and is expanded out the nozzle

to produce thrust.

The potential advantages of the concept lie in the following areas:

The use of tungsten provides a material with good thermal shock resistance and good

tensile and compressive strength. Tungsten is not subject to corrosion by the propel-

lant, and it permits the fabrication of fuel elements with very thin web thicknesses.

The use of water as the moderator provides a good low-temperature coolant for the

pressure vessel and structural members.

The heterogeneous core allows for structural independence among the fuel assemblies

and makes independent development of these components possible.

The desirable characteristics of a nuclear rocket system are reliability; high

specific impulse; low weight, small size; growth potential; ease of development; long

running time; and restart capability. High specific impulse requires high gas tempera-

ture and, therefore, high fuel element temperature. The size not only affects the weight

of the powerplant itself but also affects the shielding requirements. Growth potential in-

cludes beth a range of sizes and specific powers. Ease of development requires that the

interaction between components be small so that each component can be developed inde-

pendently. Long running times for nuclear rockets would be of the order of hours. Re-

start capability is desirable from a testing as well as an operational standpoint.

In order to study these requirements in depth, a reference design system was

chosen. This reference design system focused attention on the actual engineering prob-

lems as well as on the limits for analysis and tests and established relations among the

various components. The results of these studies are included in papers V to VIII, which

are summarized as follows:

A REFERENCE DESIGN FOR THE TUNGSTEN WATER-MODERATED NUCLEAR

ROCKET - A description is given of the design used as a reference in planning and

executing the Lewis program of investigations of a thermal nuclear rocket propulsion

system. Arrangement and types of component, normal operating conditions, and ma-
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terials of construction are discussed.
REACTOR PHYSICS - The neutronics of water-moderated heterogeneous reactors

using tungsten enriched in the 184 isotope is discussed.: Analytical methods have deter-

mined and critical experiments have confirmed the margins of reactivity required for de-

sign. Separated and natural mixtures of tungsten isotopes are used to adjust radial- and

axial-power distributions for best heat transfer. The desirable features of finely distri-

buted in-core control systems are discussed.

MATERIALS AND FUEL ELEMENT - The properties of the tungsten - uranium

dioxide fuel-element material, selection of fuel-element configurations, and methods of

fabrication are discussed. Methods of stabilizingthe fuel-element material under condi-

tions of thermal cycling so as to ensure fuel retention at operating temperature have been

studied. The limiting conditions of operation are presented.

FLUID SYSTEMS AND CONTROL - A discussion of the heat-transfer and fluid-flow

characteristics is presented. The problem areas for major components in the hydrogen

propellant system and in the water moderator loop are reviewed. With the use of analog

representation, the performance of the components as an overall system has been

studied and the stability and control of the system investigated. Finally, the size and

weight variation of a family of reactors with the same general configuration is given.

A bibliography of the reports on the tungsten water-moderated nuclear rocket pro-

gram published by NASA and by NASA contractors is included at the back of this report

following paper VHI.

__ 2
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V. A REFERENCE DESIGN FOR THE TUNGSTEN

WATER-MODERATEDNUCLEARROCKET

Morton H. Krasner

Lewis Research Center

INTRODUCTION

_ Most of the information gained in the program has been used in the reference design.

_- ms, _ n _6s_- iiicorp led, w re invesffg_atedDesign solutions to particular proble other tha ora e

during the program, and some of them are discussed in_iater:papers:":_X-lln__cigsigKf0r ..... -_: __ -_ =:_

--: a specific mission may 10ok quite different from this one, the:princ_ipal purpose:0f whlch :

_, was to explore the concept. - .................. _: ........

_ the same_gerie -fyp;es _ _-:_6-_npb'fients s _tho_ e " _:: _ :_ This nuclear rocket concept includes rai a s

_ ..... in the graphite system described in papers II to IV. In figure V:_I.: which-..... shows a block ....

_- diagram of the tungsten nuclear rocket, these c0mponent_s Can _ idenHfied_s _he reactor,

the reactor control system, and the hydrogen flow system. In addition, this system re-

quires a water flow loop and a heat exchanger for cooling the water. The reference de-

sign not only incorporates these new components but also introduces certain innovations

..... into the propellant flow and the reactor control systems.

The performance characteristics of the system are as follows: ..............

Reactor power, Mw : . .=.. : . . . :.=.==: ' ...................... 1500

Average outlet gas temPerature :- OF _ _ 4000 :

: Hydrogen flow rate, lb/sec ............................... 93

Number of fuel assemblies ........................... .... 121

Maximum fuelelemen_§urface:tem_e=rature, OF .''...'.... : ....... 4500

Fuel element outlet dynamic head, psi ......................... 12.6

Nozzle chamber pressure, psia ............................ 600

===

===

L_

N

Specific impulse, sec .................................. 830

Maximum heat flux in fuel elements, Btu/(sec)(sq in. ) ................ 7.2

Hydrogen flow area, sq ft ............................... 2.1

Core power density, Mw/cu ft 40

Precedingpageblank 159



The power level was arbitrarily set for the design and is in the range of the early graph-

ite systems. The outlet gas temperature was also set as a design objective. From these

two conditions, both the hydrogen flow rate and the number of fuel assemblies result.

Operating limits for the various components which are assumed or demonstrated are fuel-

element temperature, propellant dynamic head, and nozzle chamber pressure. Other

factors achievable in the reference design include specific impulse, maximum heat flux,

hydrogen flow area, and core power density. Specific impulse is based on a 40:l-area-

ratio nozzle with an efficiency of 98 percent. For the calculation of core power density,

the volumes of the metal reflectors were included.

REACTORASSEMBLY

Fluid Flow

Since the problems peculiar to the tungsten water-moderated nuclear rocket are

principally in the core, this component received the most study.

The reactor arrangement is somewhat complicated because all the system elements

converge in this region. Figures V-2 to V-8 simplify its description by showing the vari-

ous parts. Figure V-2 is a cross section through the reactor assembly taken normal to

the flow at midlength. The two radial cutting planes shown in figure V-2 create the axial

section shown in figure V-3; the lower half results from the vertical plane and the upper

half from the plane at 30 ° to the vertical.

These two views show an arrangement very similar to the concept schematic de-

scribed in the preceding paper and shown in figure V-4. The pressure vessel is 52 inches

in diameter, and the core region is about 55 inches long. The fuel assemblies are con-
t

tained in 2_-inch-diameter aluminum pressure tubes in which hydrogen flow is from left

to right. These tubes are fastened to two tube sheets and arranged as shown in the cross

section in figure V-2. Thermalization of the neutrons resulting from the fissioning of the

fuel in the assemblies takes place in the water surrounding the pressure tubes. The tube

sheets and the cylindrical pressure vessel, also made of aluminum, contain the water

moderator. A beryllium side reflector and an inlet end reflector are also included in the

core. The diameter of the outer surface of the side reflector is 43 inches. This side

reflector reduces neutron leakage and helps distribute the power radially in the core. A

flat distribution would result in maximum power output of the reactor. Then each of the

assemblies could put out as much power as heat-transfer characteristics would permit.

The inlet end reflector is used to shape the axial power distribution in the fuel assemblies.

The goal in this shaping is to match the local power generation with the changing heat-

transfer characteristics of the hydrogen and fuel elements for maximum effectiveness.
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The water-to-hydrogen heat exchanger required in the concept to remove radiation in-

duced heat from the water is also included inside the pressure vessel in order to couple

this component closely with the active core both in time and space flow paths. This is

done by dividing the heat exchanger into six shell and tube sections and placing them in an

annular space just outside the side reflector. The rest of this annulus forms a water flow

path and acts as a reflector. The water moderator is circulated between the core and the

heat exchanger by a pump located outside the pressure vessel. The arrows in figure V-3

show water flow paths. Water leaves the pressure vessel near the outlet end and returns

from the pump near the inlet end of the reactor. Water flow through the core region is in

the same direction as the hydrogen flow. Water not only passes outside the pressure tubes

to act as a coolant and moderator, but also passes through the side and top reflectors to

cool them. Water flows in the shell portions of the heat exchangers from the outlet end

of the core toward the inlet end of the core.

Because of gamma radiation, all materials in the vicinity of the reactor core require

cooling. The flowing moderator is in contact with most of the pressure vessel walls and

performs this cooling function. The pressure vessel head forms a plenum for distribu-

tion of the propellant to the pressure tubes. Gas is heated by the fuel elements inside the

tubes and discharges into the nozzle chamber.

The arrows in figure V-5 indicate the hydrogen flow in the core region in more de-

tail. In a nuclear rocket, the reactor fuel elements serve as heat-transfer devices for

heating the propellant. Before ending up in the head region for distribution to the fuel as-

semblies, the hydrogen must pass through the tubes of the water heat exchangers. These

components receive the cold propellant directly from the cooling passages of the nozzle

at a temperature of -290 ° F. There may be understandable alarm at the use of such a

cold gas to cool water. However, it was POssible to design and test a heat exchanger to

operate at design conditions with a comfortable margin between the tube outer surface

temperature and the freezing point of water. After flowing through the six units, the gas

can be conveniently collected. The energy deposited in the gas in both the nozzle and the

heat exchangers_m then used to supply part of the power required to feed the propellant

through the system. This is done by piping the gas out of the pressure vessel and through

a turbine. The gas leaving the turbine reenters the pressure vessel through the head. A

shadow shield can be located inside the head and conveniently cooled by the gas flowing

over and through it on the way to the fuel assemblies. Of the 121 assemblies included in

the core, 117 are used to heat most of the propellant to 4000 ° F before it is discharged

into the nozzle chamber. Insulation protects the outlet tube sheet from the hot gas. The

rest of the hydrogen is used to provide the additional system pumping power requirements.

As is indicated in paper H, some of the gas in the graphite system is also diverted from

the main nozzle flow to supply pumping power. High-temperature gas, in that case, is

diluted with cold gas to reach acceptable turbine inlet temperatures. The reduced-
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temperature bleed gas for the tungsten system is supplied by using four special fuel as-

semblies in the central part of the core. The fact that the fuel assemblies are rather

individual units makes this possible. The four units discharge at the inlet end of the core

into separate ducts which carry the fl0w to the turbopumps.

Control System

With fuel assemblies, moderator, and coolant, all that is required to make the power

source operational is a control system. Figure V-6 is an axial section through the core

including both the hydrogen and water flow and the reactor control systems. Figure V-7

is an end view of the pressure vessel with the head and shield removed. This control sys-

tem was designed to maintain a good power distribution in the core. In order to do this

the thermal neutron absorber required for regulation of reactivity was distributed fairly

uniformly across the core area. Figure V-6 shows the control devices used. These

are fixed tubes extending down into the water moderator and interspersed among the fuel

assemblies as shown in figure V-7. The tubes are Zircalloy and contain an aqueous solu-

tion of cadmium sulfate; the cadmium is a strong neutron absorber or poison. The re-

sult, in effect, is a core containing about 200 stationary small control rods. The amount

of cadmium in the solution must be varied to control the reactor. This is done by con-

necting them to a flow loop in which the solution concentration can be adjusted. A sche-

matic drawing of this control solution loop is shown in figure V-8. One control tube is

used in this schematic to represent all the tubes. It contains an inner tube for bringing

solution into the core. Flow out of the core is in the annular space between the tubes.

The large number of tubes requires careful manifolding for good poison distribution. The

rest of the control solution flow system is outside the pressure vessel. A heat exchanger

using propellant gas as a coolant removes the heat deposited in the fluid by radiation, and

a pump circulates the fluid at a constant rate around the loop. If a decrease in poison

concentration is desired, a portion of the flow is bypassed through a mixed bed ion ex-

changer. The bypass flow reenters the main flow and reduces solution concentration be-

fore the core is reached. Bypassing continues until the required increase in core reac-

tivity is established. Cadmium concentration in the solution is increased by injecting a

cadmium sulfate concentrate into the main flow from a pressurized storage container. A

combination pressurizer-accumulator rides on the main flow line to accommodate such

volume changes and to maintain 600 pounds per square inch in the system. Solution tem-

peratures range from 125 ° to 215 ° F.
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Structure

Figure V-3 shows that the pressure vessel consists essentially of two containers.

One of these is for hydrogen and is formed by the head, the inside surfaces of the pres-

sure tubes, and the tube sheets. The other is for water and is formed by the pressure

vessel cylinder, the outer surfaces of the pressure tubes, and the tube sheets. Since

most of these members are water cooled on at least one side, temperature differences

in the structure and thermal stresses should be low. In order to reduce the loads across

the walls shared by these t_ 0 containers , the water system pressure is regulated to

match the hydrogen pressur e. This is done sPecific_!y in theregion of the outlet tube

sheet since cooling is most difficult in the vicinity , Of thehotgas. With !ittle or no pres-

sure drop across the tube sheet, its thickness _n be mtnimiz_ _d the Cooling problem

reduced. The principal load on the inlet tubesheet results from the aer_ynamic forces

on the fuel assemblies. In this arrangement the tube sheet is supported by the inlet end

reflector. This 3-inch-thick beryllium member thus serves a dual purpose. The load

is transferred by means of a collar attached toflach pressuretub e which bears on the re-

flector. A forged beryllium disk would be used in its fabrication. Forged beryllium has

reasonable room temperature ductility and high strength, and forgings of this general

size were produced for early project Mercury capsules. The cooling of the reflector is

very important. Water is not only in contact with both flat surfaces, but also flows

through the thickness in holes provided for the pressure tubes. This distribution of cool-

ing assures very low temperature gradients resulting from gamma heating, and thus, the

thermal stress problem common to heavy support grid plates is avoided.

The pressure tubes, the inlet and outlet tube sheet, and the inlet end reflector form

an independent structural network; its integrity does not depend on fuel assemblies in-
serted into pressure tubes.

The fuel element is broken into 26 fuel element stages,

1 inches long, to prevent possible maldistributions in long parallel flow paths. The

spaces between stages allow some flow redistribution. The stages are attached to an axi-

ally continuous support tube. The thin tube is made up primarily of tungsten and is at-

tached to the inlet tube sheet for axial .support. To keep the 55-inch-long tube and at-

tached stages from excessive vibrations, lateral supports are located along its length.
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The princt_ functions of the fuel assemblies are t0 hold thefu_ nmter_li_.posi- ..... ,_
tion and to provide flow passages for the propellant, but they must also reduce heat leak-

_ : :: age from the hot fuel element to the aluminum pressure tubes. All these functions must

be accomplished with minimum restraint of relative thermal expansion of fuel assembly

components and the aluminum structure.

Figure V-9 is a section through one of the propulsion type fuel assemblies in which

the inlet and outlet tube sheets , the pressure tube, the load transfer collar, and the inlet

_:- end reflector are again located.



The main lateral supportis at the hotendandconsistsof a splineandkeywayarrange-
mentwhichallows relative axial andradial expansionbetweenthe pressure andsupport
tubes. Auxiliary lateral spring supportsare locatedat various points in thehot region
andallow the samefreedom. Thepressure tube is also laterally supportednear its mid-
lengthby anorifice plateusedfor water distribution.

The cold endsupporttubeattachmentincorporatesa sealwhich enablestheestab-
lishment of a stagnanthydrogenzonebetweenthe pressure andsupporttubes. Thelow
conductivityof this gascoupledwith the presenceof the supporttubeacting as a radiation
shield thermally insulatesthe pressure tube. Pressure tubetemperaturescanbe kept
below300° F with reasonablecoolingwater velocities. The sametechniqueof radiation
shields andinsulative gasspacesis usedto protect the outlet tubesheet.

A beryllium reflector plug is locatedat the inlet endof eachfuel assembly. These
makeup for the holes in the inlet endreflector providedfor thepressure tubes.

NONNUCLEAR COMPONENTS

Figure V-10 is a schematic drawing of the overall engine system. The control solu-

tion loop previously described is omitted for simplicity (fig. V-8). Figure V-11 shows

the water flow loop and includes design point operating conditions. It consists of the reac-

tor region, with parallel flow through the side beryllium reflector, the heat exchanger,

and the pump. Only the pump is outside the pressure vessel. System pressure is main-

tained at 600 pounds per square inch at the outlet tube sheet of the core. The total flow

rate is 1040 pounds per second, and temperatures range from 240 ° F at the core exit to

195 ° F at the heat-exchanger exit. The flow through the active core region is 946 pounds

per second.

Figure V-12 shows the flow of hydrogen propellant. The propellant must be forced

from liquid storage at 35 pounds per square inch through the reactor to pick up the energy

of the power source and through the nozzle to convert the energy to thrust. Since the hy-

drogen is also used to cool the nozzle, the water moderator, and the control solution, it

must also be forced through various heat-exchanger passages. All pumping is done by

two pumps in series, each with a different source of power. The pumps raise the pres-

sure of the 93-pound-per-second hydrogen flow to 1180 pounds per square inch. The hy-

drogen then cools the nozzle walls and the water moderator in the heat exchanger in suc-

cession. In the process the temperature is raised to -160 ° F. The controlled bypass

line around the heat exchanger provides flexibility of operation at off-design conditions,

as is explained in paper VIII. The heat picked up in this necessary process of cooling the

nozzle and water is used to supply two-thirds, or 6000 horsepower, of the required pump-

ing power by passing the hydrogen through a topping turbine. Turbine control is achieved
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with throttling and bypass valves. On leaving this topping turbine, the gas performs its

other secondary cooling function when part of the flow is diverted through a heat exchanger

to cool the control solution. The entire flow reenters the pressure vessel at 712 pounds

per square inch and -140 ° F. The flow through the propulsion type fuel assemblies,

90.5 pounds per second, is heated to 4000 ° F and discharges into the nozzle chamber at

600 pounds per square inch to create thrust.

As mentioned previously, the rest of the flow is heated to a lower temperature in

special fuel assemblies to supply the remainder of the system pumping power. Fig-

ure V-13 shows the path of this bleed flow. The division of flow occurs in the reactor

head region, and 2.5 pounds per second of bleed gas leaves the pressure vessel at 1400°F

and 600 pounds per square inch. It then flows through three turbines in series before dis-

charging to the atmosphere. The turbines drive the control solution circulating pump,

the water moderator circulating pump, and the first stage propellant feed pump. Each

turbine is supplied with a controlled bypass line and a throttling valve for control during

operation.

SYSTEM STARTUP

As mentioned previously, the conditions given in the figures are for operation at de-

sign power. The startup of the graphite system is discussed in paper IV. Since the tung-

sten system contains additional components and since the design incorporates modifica-

tions in the propellant feed and reactor control systems, this operational phase was also

considered in the tungsten program at Lewis. Although there is more discussion of this

in papers Viand VIII, the effect of the water moderator on the way in which the system is

brought to power is discussed here. For this discussion, a likely startup sequence is

described. _ .... ......

Small startup pumps for the control solution and water moderator systems are used

to circulate these lluids slowly: The pumps require about 1 horsepower. With no hydro-

gen flow, the reactor is brought critical and to some low power level by reducing the poi-

son concentration in the control solution. With no hydrogen flow the fuel elements in-

crease in temperature, and heat is transferred to the circulating water moderator. The

low power condition is maintained until water is at about normal operating temperature.

At that point the liquid hydrogen tank shutoff valve is opened and hydrogen flow starts

through the system under tank pressure to initiate the same sort of bootstrap procedure

discussed in papers HI and IV. The mass of warm water in the reactor system has two

effects on this operation. First, it is a source of stored energy which can be transferred

to the propellant in the heat exchanger upstream of the topping turbine to help the boot-

strap operation. Second, it not only tends to keep up the hydrogen flow, but also starts
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to increase reactor power. (The second effect is due to the negative water temperature

coefficient of the core. ) Hydrogen flow and water flow are rapidly increased as power

increases until design conditions are established at rated power and full thrust is devel-

oped.

OTHER POWER LEVELS

As stated previously, the rated power for the reference design was an arbitrary

choice. The discussion in this section has demonstrated the way in which the basic sim-

ple system schematic diagram shown in figure V-4 was translated into a feasible 1500-

megawatt system. Certain variations would be required for a nuclear rocket with a dif-

ferent power level.

Obviously, a different power level would require a different number of fuel assem-

blies. Any required number of pressure tubes could be incorporated into a structure

similar in nature to the one described. Fuel assemblies of exactly the same size and

design could be used in this structure to produce the new power. The heat exchangers

could be sized to handle the energy deposited in the water moderator. Modification of

the pressure vessel diameter would be required to house the required components. The

other system components depend primarily on fluid flow rates and pressure drops.

These conditions, then, would set sizes of turbopumps, nozzles, valves, and piping re-

quired for different power levels.

The structurally important inlet end reflector would be expected to vary in thickness

as core diameter would change. However, since its function as a reflector depends on

thickness, it may be desirable to maintain that dimension at a minimum of 3 inches even

at lower powers.

Reactor physics considerations also enter into this process of varying design power

in other ways. As core sizes become larger, required excess reactivity becomes easier

to achieve. This would indicate greater flexibility in the manipulation of nuclear param-

eters and the possibility of better performance. Conversely, as core sizes decrease,

neutron leakage from the core increases and required reactivity becomes a more dif-

ficult and finally a limiting problem. Design flexibility therefore decreases as power is

reduced. Reactor control system possibilities may also change as power varies. A

more detailed discussion of many aspects of reactor physics appears in the next paper.
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Vl. REACTOR PHYSICS

Donald Bogart, Edward Lantz, Wendell Mayo, and Paul G. Klann

Lewis ReSearchCenter

INTRODUCTION.....

The reactor physics work performed for the tungsten water-moderated reactor is de-

scribed herein. In the other papers, the mechanical design of the reactorand dynamic

aspects of the system are discussed. _ This paper deals with the neutronic behavior of the

reactor as designed within the mutual limitations imposed by the0ther phases of the con-

cept. It is shown that analytical methods have determined and critical experiments have

confirmed the margins of reactivity required for the design which uses separated tungsten

enriched in the 184 isotope. As a means for tailoring the radial and axial power distribu-

tions for desirable heat transfer, mixtures of natural tungsten and a single mixture of en-

riched tungsten have been considered and their use is illustrated.

At the outset, an understanding of the core geometry is necessary. In figure VI-1 a

cross section of the reactor is shown. The fuel assemblies through which the hydrogen

propellant flows are arranged in an hexagonal array and are surrounded by a light water

moderator. Most 0f _the fi_ssig_in_thisre act°r _t_ke__Place at essentially thermal energies

because of the _ique neutron slowing down properties of the water moderator. The core

is reflected by'a=pr_r_ry_beryiH=um_dasec0ndary water refle_ctor_: A_ater-to ' .............. -.... _-

hydrogen heat exchanger is located in _e secondary reflect0r. ........... -_; - ' ;

A sector of _S reference _ac_gri{sshownin figure VI-2. _e :fuel_le_nents have a

2. 5-inch outside-diameter aluminum pressure tube. For structural strength, tungsten is

used that is enriched in the 184 isotope which has one-tenth of the absorption cross section

of natural tungsten. The center-to-center distance between fuel elements is about

3.1 inches; this fuel-element spacing is a measure of the amount of water in the core.

The hydrogen propellant density in the fuel-element regions is very small compared to the

hydrogen density in the water and contributes negligible moderation.

The reference reactor employs a finely distributed in-core control system. The re-

entrant control tubes C0ntaining dilute absorptive solutions are=distributed throughout Ll_e

entire core and are shown in figure VI-2 as small circles spaced among the fuel-element

tubes. Because the contr01tu_s affect neighboring fuel assembiies only, the amount of
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control that can be obtained becomes virtually independent of core size. The radial

beryllium reflector is an average of 2.5 inches in thickness and contains about 10 percent

by volume of cooling water. The beryllium is scalloped to displace water near the outer

fuel assemblies in order to minimize circumferential power peaking.

In the reference reactor, the fuel-element spacing Is kept constant so that the entire

core is made up of hexagonal cells as shown in figure VI-2. The initial objective of the

neutronics work to determine the multigroup parameters of these cells. These cell pa-

rameters are then used to arrive at a reactor design that allows each fuel element to op-

erate near its best condition for transferring energy to the hydrogen propellant.

The incentive for flattening and shaping the power distribution is to produce maximum

gas and propellant temperature in each fuel assembly. These must be consistent with the

limiting maximum metallic fuel temperatures and the maximum dynamic loads on the fuel-

element stages.

There are many methods that may be exploited to shape the power distributions to

that desired. In particular, there is the method that distributes the fissionable materials

nonuniformly throughout the core and the method of varying the water spacing between

fuel assemblies. These techniques have been used In reactor designs in the past.

In the present reference design, the available range of fuel loadings of uranium diox-

ide in the tungsten - uranium dioxide matrix has been employed to flatten the power across

the individual fuel cell. The method of flattening power across various fuel cells in the

core in the radial direction employs natural tungsten as a distributed parasitic absorber.

This is accomplished by making some of the tungsten support tubes that support the fuel-

element stages out of natural tungsten rather than separated tungsten.

The method of adjusting the axial power distribution to one that is desirable for heat-

ing the propellant up to the required temperature in the shortest length of time requires a

combination of heat-transfer and neutronic calculations. Here too natural tungsten is used

as a distributed parasitic absorber. Since the reference design uses separated tungsten in

the fuel element, replacing part of the separated tungsten by natural tungsten in strategic

fuel stages of the fuel assembly can shape the axial power. With the judicious use of these

special stages in conjunction with the use of inlet reflectors, the desired axial power dis-

tribution has been approached quite closely. In the reference design shown in figure "v-I-1

the core has uniformly spaced fuel assemblies, which are identical to each other in geom-

etry and composition, in a hexagonal array.

The selection of the fuel-assembly center-to-center spacing is reserved so as to ful-

fill a very important requirement of the reactor design. This requirement is that the re-

actor should be inherently self-stabilizing during power operation. The requirement can

be achieved by designing for a negative water temperature reactivity effect. The center-

to-center distance between fuel assemblies shown in figure VI-2 is all important in estab-
= :

lishlng the desired negative effect.
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The reactor shown in figure VI-1 is about 4 feet in diameter and represents the ref-

erence reactor for which an indepth study has been made. Its power level is approxi-

mately 1500 megawatts. These reactors can be increased in power level by adding more

of these identical fuel assemblies with a resultant increase in core diameter. However,

the tantalizing prospects lie in going in the other direction - that is, in exploring the pos-

sibilities of designing very small cores. These compact cores will be discussed later.

It is recalled that the reference reactor has a finely distributed in-core control sys-

tem, which consists of reentrant tubes in the water spaces between fuel assemblies.

These tubes contain a flowing cadmium-water solution Of low concentraUon. Such a dilute

system is capable of controlling the core with a minimum of perturbation to the power dis-

tribution in the neighboring fuel assemblies. Although reactors that employ a rotating

drum control system in the radial reflector are familiar, such reflector control systems

are inadequate for the larger cores. It will be shown that for large reactors an in-core

finely distributed control system is independent of core site and has many advantages.

The first area to be discussed concerns the neutron cross secUons. The reactor concept

requires precise neutron cross sections for all of the tungsten isotopes. Therefore, con-

siderable emphasis was placed on cross section measurements e_ly in the program.

The second area will be the devei0pmen_:of reactor analysis_:me-thods: _ Ordinarily,

reactor designs depend heavily on the results of critical experiments. Because of the un-

availability of the required amounts of separated tungsten, semiempirical approaches that

rely on critical experiments to a large extent have been rejected in the present study.

Reliance has been placed on neutron transport calculations using the Sn transport pro-

grams for the core cell calculaUons. The basic separability of the axial and radial neu-

tron flux distributions and the relative uncoupling of the fuel-element cells permit the

use of one-dimensional multigroup programs for gross criticality calculations. The va-

lidity of this approach has been checked by two-dimensional calculations.

The third area is the establishment of the reference reactor design that has been pre- :

viously described. Although a range of reactor sizes was looked at, one reference re-

actor was adopted for detailed study.

In the final area, the analytical design method has been confirmed by a series of

critical experiments which simulate the reference reactor. Because of the relative com-

pleteness and precision of the microscopic neutron cross sections for the materials of the
I

reference reactor, a high degree of confidence can be placed in the accuracy of fuel-

element cell calculations. Critical experiments have been performed to check the overall

accuracy of the calculations and to confirm the desired negative temperature coefficient

of reactivity.
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CROSS SECTIONS

Tungsten has many large resonances in the intermediate neutron energy range

(fig. VI-3), and an accurate knowledge of the resonance parameters is required for pre-

cision neutronic calculations. The major competitors for neutrons in the tungsten water-

moderated reactor are tungsten and uranium 235. The competition is in proportion to the

amount of each material and to the magnitude of their respective cross sections. In order

to maximize absorptions in the fuel, uranium enriched to 93 percent in uranium 235 is

employed. Absorptions in the tungsten should be minimized in so far as is practical.

Natural tungsten has a thermal cross section of 18.3 barns, which may be reduced by al-

most an order of magnitude by enriching in the tungsten 184 isotope. Since tungsten 184

has no significant resonances below 185 electron volts, enrichment is even more at-

tractive. Even with large enrichment, a significant fraction of the neutrons may be ex-

pected to be absorbed in separated tungsten. The resonances may be effectively by-

passed, however, by slowing the neutrons down in the water outside of the fuel elements

and thereby keeping neutrons away from the tungsten.

TABLE VI-I. - CROSS SECTIONS FOR TUNGSTEN ISOTOPES

Cross section

CapturetoI0eV

Resonancesto2100eV

Resonances to 2200 eV

Inelastic scattering to 1.5 MeV

Remark

±3 percent
20 levels

125 levels

14 levels

Instrument

General Atomic linac

Oak Ridge National Laboratory

fast chopper

Rensselaer Polytechnic Institute linac

Argonne National Laboratory,

Van de Graaff accelerator

Table VI- 1 summarizes some recent work on cross sections for the individual tung-

sten isotopes. Capture cross sections at low energies below 10 electron volts have been

measured recently at the General Atomic linac with a precision of +3 percent.

The resonance region to 2100 electron volts has been studied at the Oak Ridge fast

chopper facility; 16 resonance levels in tungsten 184 above 185 electron volts have been

measured and 4 major levels of non-184 isotopes have been remeasured.

The resonance region to 2200 electron volts was covered by the Rensselaer linac, and

parameters for a large number of resonance levels in all of the isotopes are being meas-

ured.

Finally, the high energy inelastic scattering cross section to 1.5 million electron

volts are being measured at Argonne with the Van de Graaff accelerator. The partial

cross sections for many inelastically excited levels in tungsten 184 and natural tungsten

have been reported and tungsten 182 and 186 isotopes are being measured.
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As a check on the precision and completeness of these available microscopic cross

sections, several integral experiments were undertaken at the Lewis Research Center.

The first of these is the measurement of effective resonance integrals for the isotopes of

tungsten.

A reactor that is used as a reactivity measurement facility is shown in figure VI-4.

The unreflected aluminum reactor vessel is 12 inches in diameter and contains a uranyl-

fluoride-water solution. The neutron slowing down flux in this core is similar to that pro-

vided in the concept reactor. Isotopic samples are enclosed in cadmium covers at the

center of the core and criticality is achieved at aparticular solution height that is accu-

rately measured. The change in solution height for samples of various thickness is re-

lated to that for a standard reference such as thin gold for which the resonance integral is

known.

Figure VI-5 shows effective resonance integrals Ieff for gold. Values of Ief f are
in barns and represent the average epicadmium resonance capture cross section per atom

as a function of sample size. The sample size is given by the parameter (surface-to-

mass ratio)1/2 of the sample. This parameter correlates results for most sample ge-

ometries and corresponds to an inverse thickness for a slab sample. Large values of

surface-to-mass correspond to very thin samples in which very little self-shielding of

neutrons occurs. The epicadmium reactivity and activation data points show that Ief f

decreases as samples get thicker. The reference dilute integral or unself-shielded value

of 1585 barns for thin gold has been used as a standard.

The solid line is the calculation of these epicadmium values of Ief f by the Nordheim

method, which follows the data very well giving credence to the experimental and analyti-

cal methods.

The effective resonance integrals for separated tungsten 184 mixtures are shown in

figure VI-6. The data points are for tungsten samples made of isotopic mixtures that are

highly enriched to approximately 94 percent in tungsten 184. In the ref_erence reactor,

the geometries of the tungsten 184 samples correspond to values for (surface-to-mass

ratio) 1/2 of 0.50 to 1, 00. The Nordheim calculations using the known resonance param-

eter data for the tungsten isotopes predict the experimental data very well. Interestingly,

the 184 contribution to Ief f by itseif is only approximately 25 percent of the total integral

even for these highly separated tungsten 184 mixtures. This shows the importance of the

large resonances of the non-184 isotopes.

Another integral measurement that has been made is shown in figure VI-7. This is a

tungsten-water age experiment. The age for fission energy neutrons is proportional to

the mean square distance a neutron will travel from the point of fission to where it be-

comes a low energy neutron. An array of natural tungsten rods in a water tank with a

radioactive neutron source and detector foils located in the array of rods was used. The

magnitude of the experimental age is an indirect measure of the high energy cross sections.
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Therefore, comparison of the experimental and calculated values of the age is a check on

how well high energy elastic and inelastic cross sections are known.

The age results are shown in figure VI-8 for plutonium-beryllium source neutrons.

The age to 1.44 electron volts in square centimeters is plotted as a function of percent

tungsten in tungsten-water mixtures. Three tungsten-water mixtures were measured and

the ages for these mixtures are less than the age for pure water. This immediately indi-

cates the importance of the tungsten inelastic cross sections because the inserted tungsten

rods slow down fast neutrons better than the displaced water. The calculated curves are

from the GAM-II cross section multigroup compilation that is used for reactor studies.

Although the plutonium-beryllium source spectrum has been measured above 1 million

electron volts, it is generally known that there is a low energy component that has not

been measured. The plutonium-beryllium source spectrum that was used required a

20_:5 percent component at approximately 0. 5 million electron volts in order to normalize

the calculation and experiment for pure water. When this spectrum with its 20 percent

component is used, the calculated results are shown by the solid line, which is about

10 percent lower than the ages measured for the tungsten-water mixtures. This difference

is believed to be due to the use of the evaporation model at high energies which exagger-

ates slightly the inelastic scattering effects due to tungsten. If the +5 percent uncertainty

in this component is used, the bottom and top dashed lines, respectively, are obtained.

REACTORANALYSIS METHODS

The analytical part of the reference reactor study program serves several functions.

It provides a vehicle for the understanding and interpretation of physical phenomena, for

the design and specification of pertinent experiments, and for the extension of experi-

mental data into areas not specifically covered by the experiments.

Figure VI-9 indicates very briefly how the neutronic calculations proceed. The basic

problem is to obtain an adequate approximation to the solution of the Boltzmann transport

equation. Of course, calculational methods have not evolved to the point where the gen-

eral reactor problem can be solved in one package. Rather, it is solved in a series of

steps. Iterative numerical methods programmed for the digital computer are used.

The basic calculation for the reference reactor is the solution of the fuel-ceU problem.

The GAM-II and GATHER programs are used to obtain multigroup spectrum averaged

microscopic cross sections for the materials in the fuel element. The Nordheim reso-

nance calculation is done within the GAM-II program for the tungsten isotopic and uranium

238 resonances.
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Spatial neutron flux solutions for the fuel-element cells are obtained using an Sn

transport theory program. The cells are usually cylindricized on an equal area basis

which permits detailed one-dimensional calculations to be made. Two-dimensional (x, y)

cell solutions may be obtained when required. For example, cell self-shielding factors

due to the pressure of the liquid poison control tubes are most accurately computed using

two-dimensional programs. The self-shielding factors resulting from these cell calcula-

tions are used in the GAM-H and GATHER programs to recompute the neutron spectrum

and macroscopic average cross sections.

These cross sections are then used in full core spatial calculations to obtain the re-

actor multiplication factors and gross radial and axial power distributions. A radial-

axial buckling synthesis technique is used with one-dimensional programs, although two-

dimensional (r, z) calculations also have been performed.

Another analytical problem that is important to the tungsten water-moderated reactor

is that of gamma heating. Since the magnitude of the water temperature plays an impor-

tant part in the system operation, accurate calculations of the energy deposition in the

water by gamma rays is required: Figure VI-10 indicates the technique used for solving

the gamma ray problem. The basic task is to determine the originS, capture locations,

and energies of the gamma rays. The Monte Carlo program ATHENA was developed for

this purpose. Neutrons and gamma rays, both primary and secondary, are tracked by

Monte Carlo methods in three-dimenstonal geometry to provide heating rates in any part

of the reactor. Up to 81 energy groups may be used. Also, a statistical estimator is

used to compute heating rates and fluxes at point detectors inside or outside of the core

in reasonable computing times.

REACTORDESIGNAND CRITICAL EXPERIMENTS

Reference-Reactor Design Considerations

The basic calculation in the reference reactor is the estimation of the multiplication

factor for the fuel cell. This cell consists of a fuel element, its pressure tube, and the

proportional amount Of surrounding water moderator.

The multiplication factor as a function of water thickness for several concentrations

of tungsten 184 is shown in figure VI-11. The water thickness parameter shown is the

distance between adjacent pressure tubes. The multiplication factor, in the absence of

any leakage of neutrons, is just the number of neutrons produced per neutron absorbed in

the cell. The bottom curve is for natural tungsten with 30.7 percent tungsten 184. Results

for enriched tungsten containing 78.4, 87, and 94 percent of tungsten 184 are also shown.

J
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The generalsimilarity of the skapeof the curves is noted. As the water thickness ts

increased from small values, the number of neutrons slowing down past the resonances

increases and the multiplication increases. A point is reached, however, where an addi-

tional water moderator acts as a parasitic absorber and the multiplication decreases.

This corresponds to an overmoderated condition; the region to the left of the peak multi-

plication corresponds to the under-moderated region.

A substantial gain in multiplication with increased enrichment in tungsten 184 is ob-

tained. This increase is due to the decreasing thermal absorption cross section which

goes from 18. 3 to 2. 9 barns with enrichment, while the effective resonance integral goes

from 38.6 to 10. 7 barns. This accounts for a major part of the increase in multiplication.

It is clear that some enrichment of tungsten 184 is required. The availability and cost of

tungsten enriched in the tungsten 184 isotope are therefore of prime importance.

The aspects of separated tungsten 184 production have been considered in detail at

Oak Ridge. The K-25 gaseous diffusion plant at Oak Ridge is capable of separating tung-

sten isotopes. This plant has been mothballed, but the results of a technical and economic

study for producing tungsten 184 that was conducted by the K-25 people are shown in fig-

ure VI-12. The unit costs are shown on the right for various enrichments in tungsten 184•

This unit cost curve rises very rapidly above 90 percent enrichment. The choice of the

87 percent enrichment for the reference isotopic mixture shown has a reasonable unit cost

and the annual production shown on the left for this enrichment is indicated to be 10 000

pounds.

Figure VI-13 again shows the neutron multiplication as a function of water thickness

for the reference cell using tungsten enriched to 87 percent in tungsten 184. The maxi-

mum multiplication is about 1.39, and it occurs at a water thickness of a little more than

1/2 inch and decreases for less water due to increased resonance absorption in the tung-

sten.

The lower curve shows the neutron multiplication for the core with 121 of these fuel

elements inside the beryllium reflectors that were previously described. This curve

takes into account the neutrons leaking out as well as those absorbed in the reactor. For

a water thickness of 1/2 inch, the multiplication is decreased to about 1.18. The reason

for the interest in the under-moderated region to the left of the maximum is that this is

the region where significant negative temperature reactivity coefficients can be obtained.

With a negative coefficient, as the core temperature increases, the core loses reactivity.

As a result of this behavior, the reactor power is self-stabilizing. Since temperature is

the key parameter that must be controlled for reliable rocket reactor operation, it will be

shown that this negative temperature coefficient of reactivity can be a very useful feature

for taking the reactor up to power and for power regulation.
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Preliminary calculations indicated that a water thickness of about 0.54 inch might

give a sufficiently negative coefficient. However, the calculation of the exact water tem-

perature coefficient of reactivity is difficult because of the many variables that are tem-

perature dependent. Also, the use of isotopically enriched tungsten in a thermal reactor

was without precedent. Therefore, an experimental critical program was initiated to de-

termine the precise amount of excess reactivity available and to determine if the water

temperature reactivity was sufficiently negative.

_=_

• :_
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Critical Experiments

The reference reactor design was neutronically and physically simulated for a series

of critical experiments. Figure VI-14(a) shows the critical assembly. The core is con-

rained in a 6_-foot-diameter water tank, and the pressure tubes that contain the fuel as-

semblies are shown. These tubes are inserted through the upper grid plate.

A cutaway view of the critical assembly is shown in figure VI-14(b). The upper and

lower grid plates that space the 121 fuel assemblies in a hexagonal array are shown. Be-

fore the reactor is made critical, water is pumped into the tank filling the spaces between

the fuel elements and around the core.

The beryllium reflector used consisted of a 4-inch inlet reflector {not shown) that was

assembled in the area below the core and the 2_-inch beryllium side reflector. This side
p=l

reflector was backed by 1//4 inch of boral sheeting to reduce the reactivity effects of the

exterior water. It is noted that the reference core is upside down in the experimental

eorffigurations, that is, the inlet beryllium reflector is at the bottom. The beryllium

side reflector was faced by a scalloped aluminum plate which mocked up the true shape of

the reflector .... _- .....

The dilute poison control tubes are located at the midpoints of the triangular water

gaps between the fuel elements. These tubes contained cadmium solution to hold down the

excess reactivity of the core•

The isothermal temperature coefficient was measured in these cores by heating the

moderator water in a series of steps to 180 ° F and measuring the reactivity using cali-

brated control rods.

The firsttwo experiments were made at two differentfuel-element spacings to study

the change of the core excess reactivityand temperature coefficientwith fuel-element

spacing. These experiments were made with the core reflectedwith water only, because

of the flexibilityof water reflectorsto permit changes in fuel-element spacing. One of

these fuel-element spacings was then selected for the beryllium reflectedexperiment

which was a mockup of the reference design. _.....
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Since large quantities of separated isotopes were not available for construction of

fuel elements, the neutronic characteristics of the fuel element had to be simulated in the

mockup core. Figure VI-15 presents a cutaway view of the fuel element to show how the

simulation was accomplished mechanically. The outside diameter of the aluminurv pres-

sure tube is 2.56 inches. The fuel stages contain the correct amount of uranium 235 but

required substitute materials for the tungsten 184 mixture. The two views on the right

show schematically how the simulation materials are distributed. A uranium-aluminum

alloy is used as the fuel. The enriched tungsten is simulated using natural tungsten in re-

duced amounts to match the correct thermal cross section• In order to match the correct

resonance region capture, a single ring of depleted uranium 238 was employed. A total of

121 of these fuel assemblies were used in the critical experiments. The final sizes of the

simulating materials were based on numerous calculations so as to assure an accurate

neutronic simulation.

The calculated results showing the precision of the simulation are given in table VI-2.

The results are given in terms of absorptions per source neutron for the reference and

simulated cores. The hydrogen, oxygen, and uranium 235 absorptions agree very well.

Since the separated tungsten is simulated by using a combination of natural tungsten and

uranium 238, the sums in both cores must be compared. The sum is 0.150 for the ref-

erence core and 0. 153 for the simulated core. The aluminum shows some mismatch al-

though the total absorptions per source neutron compare very well. The total for the ref-

erence core is 0. 851 and the total for the simulated core is 0. 854. The difference of the

absorption from unityis due to the neutron leakage. The thermal utilization quantity

TABLE VI-2. - PRECISION OF FUEL-ELEMENT

SIMULATION

Absorption

Material Reference core Simulated core

Hydrogen

Oxygen

Aluminum

Uranium 235

Tungsten

Uranium 238

0. 071

• 002

• 001

• 617

• 146

•004

0. 851

0. 150

O. 069

•002

• 014

.616

• 095 ")

.058j "°"

O. 854

153

Total

Core Thermal utilization Age,
cm

Reference 0.7857 95.16

Simulated .7820 90.56

shown is the ratio of thermal absorptions in

fuel to total thermal absorptions, and the match

in this parameter is indicative of how precise

the simulation is at the thermal energies. The

slowing down ages may be compared as an in-

dication of the match of the slowing down prop-

erties of the two cores. The difference shown

is due to a small high energy scattering mis-

match.

These comparisons of reference and sim-

ulated cores are on the basis of calculations.

In order to obtain experimental confirmation of

the simulation, several kilograms of calutron

separated tungsten isotopes were obtained from

Oak Ridge. These isotopes were used to fab-

ricate 5 special stages which were substituted

for five of the stages in the center fuel assembly
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TABLE VI-3. - COMI:'APJSON OF

REFERENCE AND SPECIAL

FUEL STAGES

Fuel stage Tungsten isotope

182 I 183 l 184 186

Weight in fuel stage, g

Reference 6. 18 38.82 339.61 5.52

Special:

5-Ring 6.15 38.91 162.16 5.63

8-Ring 7.92 40.30 244.20 7.84

ll-Ring 9.78 41.75

of the mockup c0re and the resulting change in re-

activity was measured. The special stages were in

the form of concentric rings of metallic tungsten

isotopes.

The isotopic tungsten composition of the ref-

erence fuel cell could not be exactly matched with

these special stages. However, its expected re-

activity worth was bracketed by varying the number

of rings. This can be seen in table VI-3, which

shows the number of grams of each isotope in a ref-

erence stage and in three configurations of special

stages. It is seen that the 5-ring stage closely
332.00 j 10.15........... _matches the ref_erence stage in every isotope except

L :_ _ 184. Due to the deficiency in 184, this 5-ring spe-
cial stage must be less absorptive than the reference stage. As more rings are added to

_: increase the 184 content, the amounts of the other isotopes also increase. Consequently,

-_ when the amount of 184 is closely matched, as it is in the ll-ring case, there is too much

_:_=__ of the other isotopes, which make thisconfigurationmore absorptive than the reference

stage._i: Therefore, the reactivity of these 5- and ll-ring special states will bracket the re-
_ activity of the reference tungsten stage.

!--

L:

The results of the experiment are shown in figure VI-16. The ordinate gives the re-

activity which would result from a total replacement of all the mockup stages in the core

by special stages which have the number of rings listed in the abscissa. The reactivities

measured with the special fuel-element stages were converted to their full core counter-

parts by an analytically derived constant. It is noted that the reactivity of the mockup

stages is experimentally found to lie in between that of the 5- and ll-ring special stages.

Thus from the extremes of this experiment it can be expected that the reactivity of the

mockup core is within +2 percent of that of the reference core.

Actually, the agreement is considerably better than this. The comparative deviation

between the mockup core and the core built of 8-ring special stages was calculated. The

result of this calculation is shown by the triangle. It is seen that it agrees to within

1/2 percent in reactivity with the measured value. This close agreement lends strong sup-

port to the method of treating the individual isotopes of tungsten in the calculations used

in establishing the mockup core.

The results of the critical experiments on the mockup core are given in figure VI-17.

The multiplication factors are shown as functions of the center-to-center spacing between

the fuel elements. Measured multiplication factors for the three critical configurations

investigated are plotted. The values obtained at the 2.9- and 3-inch fuel-element spacings
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with water reflectors are indicated. When the beryllium reflector is added, a 5-percent

increase in multiplication was obtained for the 3-inch spacing.

The precritical calculated values are shown by the solid lines. The lower curve is

for water-reflected cores while the upper one is for beryllium-reflected cores. It is

noted that the reactivity of all cores was consistently underestimated initially by about

2 percent in reactivity.

More detailed calculations were subsequently performed for the water-reflected con-

figuration with 3-inch spacing. These calculations included two-dimensional calculations

of the fuel-element cell and the total core, and improved treatment of the resonance

effects. These refined results are shown as the dashed line on the figure and were found

to agree with experiment to within 1/2 percent in reactivity.

Because a negative water temperature coefficient was desired, spacings on the under-

moderated side of the multiplication curve were investigated. On the left side of the

curve a reduction in the amount of water between the fuel elements results in a loss of

multiplication. This is indicated by comparing the 3-inch water-reflected configuration

with the 2.9-inch configuration. A negative temperature coefficient is therefore suggested

on the left side of the curve since the multiplication is decreased as the water density is

reduced by heating.

The purpose of the first two critical experiments with the 2.9- and 3.0-inch water-

reflected configurations was to find the fuel-element spacing that had a suitably negative

temperature coefficient with sufficient overall core reactivity. The 3-inch spacing was

found to be most satisfactory. The beryllium-reflected reference core was then built

using the 3-inch spacing.

Power Distributions

The detailed radial power distributions within a fuel element are very important in

the reactor design since the maximum exit gas temperature can only be obtained if each

fuel ring is operating near the maximum allowable temperature. Therefore, the spatial

distribution of the power in the fuel-element cell must be accurately known. An experi-

ment conducted to measure the radial power distribution within a simulated fuel element

is shown on figure VI-18. The relative power density is plotted as a function of the radius

of the fueled region. The simulated fuel element, shown in the insert, is similar to that

previously described. The fuel consisted of seventeen l-rail uranium 235 sheets wrapped

with fission fragment catcher foils interspersed so to measure relative power. The

catcher foils and fuel sheets are shown schematically along the abscissa. These are dis-

tributed in the region between the 0.25- and 1.00-inch radius shown. Natural tungsten

and uranium 238 were distributed similarly to represent enriched tungsten. The thin
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natural tungsten ring Shown represents the support tube. The circles are the experi-

mental data points. They are normalized to 1.0 at the outside radius of the fuel. The

power decreased from this point to a value of 0.46 at the inner radius. The triangular

points are calculated values using multigroup transport theory, and the agreement is very

good.

The radial power fall off is due primarily to the attenuation of the thermal neutron

flux. Neutrons slowing down in the water constitute nearly the entire source of thermal

neutrons. Therefore, the power, which is proportional to the fission cross section times

the flux, falls off. The distribution shown is typical of an unzoned fuel element. This

power distribution would require ori/icing of each propellant channel within the fuel ele-

ment in order to operate at maximum exit temperature. The more desirable alternative

is to flatten the power in the fuel element by fuel zoning. The flux will still decrease

toward the center of the element but the fuel is distributed so that the power is relatively

flat. Since the calculation and experiment are in good agreement for the experiment

shown in figure VI-18, the same calculation can be used to compute the loading schedule

for uniform power.

Figure VI-19 shows the radial power in a zoned 10-ring fuel element. The power dis-

tribution relative to the average power in the cell is shown for each of the 10 fuel rings.

The ring numbers correspond to the fuel rings indicated on the insert. The loading

schedule used is given for each fuel ring. A loading of 32 volume percent uranium diox-

ide in tungsten is assumed to be the metallurgical limit for these fuel elements and was

used in the center rin_ The loading decreases to 12.9 volume percent at the outside.

This zoned distribution of fuel compared to the unzoned fuel element results in a_reduction

of about 1 percent reactivity. The variation of the power through the fuel ring is not seri-

ous because of good fuel ring thermal conductivity. In ring number 8, the calculated

variation is ±5 percent relative to the average in the ring. If the power were flat through

the ring, the metal temperature would be decreased only 14 ° F.

However, the power distribution is still not quite perfect. Note the slight dip in

power in rings 6, 7, and 8. An increase of 0.2 volume percent uranium dioxidein these

rings would correct this. However, this is well within the i-0.5 volume percent estimated

uncertainty in the manufacture of any given fuel ring.

Another type of power distribution that is important within the fuel element is the

circumferential power distribution.

A sector of the reference reactor is shown in the upper sketch of figure VI-20. It is

noted that the amount of water varies around the perimeter of the fuel element. The

greatest amount of water is in the triangular gaps where the control tubes are located.

There are two competing effects here - there is an effect causing flux peaking where the

most water exists and an effect causing flux depression due to the cadmium in the control

tubes. These two effects tend to cancel one another.

187



The rectangular cell used to compute the circumferential power distribution is shown

on the lower half of figure VI-20. The left half is shown as it is represented in the two-

dimensional Sn transport calculations in (x, y) geometry. The circular boundaries are

necessarily represented as steps. The area of each region is conserved. If advantage

is taken of the 180 ° symmetry that exists, only the left half of the cell need be specified.

Even with this savings in mesh size, a 15-group 400-point problem will just about over-

flow a computer with a 32 000-bit storage. The reactivity of the cadmium solution is

also obtained from this type of calculation.

The data points in figure VI-20 indicate the circumferential power for the case with

pure water in the control tubes. The values given are the power in the specified mesh

interval relative to the cell average power. The variation circumferentially amounts to

about 4 percent from the smallest value of 1.47 to the maximum of 1.53 near the control

tube which contains water only. Peaking is reduced when the control poison is present as

it will be under normal operating conditions. This point was checked experimentally, and

it was found that there is negligible circumferential peaking around the central fuel ele-

ment when reference cadmium concentration is in the poison tubes. Figure VI-21 shows

the results of activation measurements made with foils circumferentially placed around

two of the fuel elements in the critical assembly. The purpose of the measurements was

to determine the effects of the poison control tubes and of the reflector on the circumfer-

ential power distributions. The ratio of the power at the angle _ to the average power

around the fuel element is plotted as a function of _. For the center fuel element, neg-

ligible circumferential power variation was observed with the dilute reference concentra-

tion in the control tubes.

The results of circumferential power measurements made on a fuel element located

at the edge of the core indicate a power peaking of about 6 percent in the direction of the

water gaps between the fuel elements at the reflector. These water spaces between the

fuel elements and the reflector can be reduced and still allow adequate cooling. This

should reduce the power peaking at the reflector. The power peaking is included as a

local factor in heat-transfer calculations.

Of equal importance to the radial and circumferential power distribution within the

fuel element are the gross radial and axial power distributions in the core.

Figure VI-22(a) shows the radial power density in the uniform or unzoned core. The

measured local to average radial power for all the fuel elements in a 1/'12 sector of the

core is shown plotted as a function of the radial position of the fuel element. The meas-

urements were made by counting the fission product gamma activity of the middle axial

fuel stage of each fuel assembly.

The values calculated by a one-dimensional cylindricized representation of the core

are shown by the solid line. It is noted that good agreement is obtained except near the

edge of the core. The deviations here are believed to be due to the cylindrical approxi-
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mation of the hexagonal boundary of the core employed in the calculation.

Since the power generation ofthec0re_s:_not-Unif=orm across_thecore_rad_Us, not all ' .......

of the fuel assemblies are operating at the limit of their heat-transfer capability, and

consequently, there would be a reduction in the hydrogen gas exit temperature. This

could be compensated for by orificing the hydrogen flow to the outer fuel assemblies to

maintain the required exit temperature. However, this would result in a reduction of

total core power.

Another way of maintaining the exit temperature would be by decreasing the fuel

loading in the center fuel assemblies. However, there are manufacturing advantages in
keeping all the fuel assemblies identical.

Water-moderated reactors designed with fuel-element spacings that increase with

core radius were investigated early in studY. _In this method of zoning, water is remove d

from the center of the reactor and a flatter radial power generation is obtained. The fuel

cells that result are not uniform.

The method of flattening the radia! power that was chosen f01" the reference .design

was the use of natural tungsten support tubes in central fue I assemblies: In _iS way it is
possible to keep the fuel loading and the fuel assembly spacing constant and to flatten the

radial power distribution by placing an additional parasitic tungsten absorber around the

central fuel assemblies.
- -- - -."5 - = -: =- - - =

The reference reactor design is particularly adaptable to this method, since the tung-

sten absorber can be incorporated by replacing the enriched tungsten support tubes with

natural tungsten support tubes.

Figure VI-22(b) shows an example of radial zoning in which the relative power gener-

ated in the fuel assemblies is plotted as a function of radius in the core. The effect of re-

placing the tungsten 184 support tubes in the central 19 fuel assemblies with the more

absorptive natural tungsten support tubes is shown by comparing the curve for the uniform

core to a calculation and the measured values for the zoned core. The power generated _

in the outer fuel assemblies is significantly closer to that generatedin the= central assem-

blies in the zoned core. This means that the propellant hydrogen flow to these outer fuel

assemblies does not have to be orificed as much in the zoned core to maintain the mad-

mum exhaust gas temperature from all assemblies. This zoned core has about 2 percent

less reactivity than the uniform core.

In order to dis cuss the axial power distribution, recourse must be made to fig-

ure VI-23, which was originally discussed in paper V. This figure shows the fuel as-

sembly and a cutaway sketch of one of the stages. The axial power distribution is con-

cerned with the distribution of power between the axial stages. The composition of ma-

terials in some of these fuel stages can be adjusted to make the amount of power generated

__:_:_ in the stage closer to that which is desired for efficient heat transfer. In addition, the

:_:: axial power distribution is shifted by use of a neutron reflector at the inlet end of the core.
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It consistsof a beryllium plug with axial holesthat are sized to set the hydrogenflow to
the fuel assembly, a beryllium plate that supportsthefuel assemblies, andthe water in
andaroundthe inlet plenum.

Figure VI-24(a) showsthe axial power densityin a uniform core. Thepowermeas-
ured in eachof the stagesof three fuel elementsis shown. Oneof the fuel elements
measuredwaslocatedat the center of the core, oneat an intermediateposition, andone
at the edgeof the core. Themeasuredpower in eachstagenormalizedto the averageof
all the stagesin that assemblyis shownplotted againstthe axial locationof eachstage.
The inlet beryllium reflector is at the left, andthe outlet water reflector is at the right.

Thenormalized results for the three fuel elementsare seento coincideclosely.
Thus, the similarity of theaxial power distributions for all the fuel elementsis seento
bean indicationthat the axial andradial powerdistributions are separable.

Thesolid line showsa diffusion theory calculationfor the axial power distribution.
Goodagreementis foundeverywhereexceptnear the inlet beryllium reflector wherea
10percent underestimationoccurs. Better results might beobtainedat the inlet beryl-
lium reflector with transport theory calculations.

In figure VI-24(a), it is notedthat the power is shifted slightly toward the inlet end
by theberyllium reflector. This shift toward the inlet is desirablebecausefor a given
fuel surface temperaturemore heat canbetransferred to the cold enteringhydrogenat
the inlet thanto the hot hydrogenfurther alongthe core.

Sinceseparatedtungstenis beingusedin this reactor, the useof somenatural tung-
stenas a parasitic absorberprovidesa convenientmeansby whichthe axial powerdistri-
butionmaybe further shifted to the inlet to better satisfy heat-transfer needs. Theaxial
power distribution in the core, that is, thepower in eachof thefuel stages, is shownin
figure VI-24(b). The powerdistribution for eachstageof uniform compositionis again
shownas the dashedline. However,by usinga mixture of 30percentnatural tungsten
and70percent separatedtungstenin these10stages, this more absorptivemixture shifts
the axial powerdistribution to the solid line shown. Theeffectsobtainedare the results
of usingzoningWithepithermal absorptionrather thanchangingthe fuel loading. This
techniqueeliminates thermal spikingat zoneboundariesandgives a smoothpowerdistri-
bution, which is muchbetter suitedfor efficient heattransfer as will be in paperVIII.
However, the introduction of somenatural tungstento accomplishthis powershift re-
ducesthe available reactivity by about4 percent relative to anunzonedcore.

Reactivity and Reactivity Control

From a control standpoint, the two important reactivity effects are those due to the

water and to the fuel temperatures. The reference core was designed with the small fuel-

element spacings so that a negative water temperature coefficient of reactivity would be
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obtained. In addition, a small water thickness magnifies the resonance absorption which,

in turn, magnifies the negative fuel temperature coefficient.

Figure VI-25(a) shows the change in reactivity from the room temperature value as a

function of the average water temperature in the core. The curve is from early calcula-

tions for a zoned core that appeared to be desirable and was used for the control system

studies. The points plotted in this figure are experimentally measured values for the un-

zoned isothermal critical assembly with a beryllium reflector.

There are two effects that are not accounted for in the experiments. One is the ef-

fect of zoning the core for a better power distribution. It should be noted that in this cal-

culation the radial power was flattened by varying the fuel-elemen_-spa:c{ng. -_ The other is

the effect of having the cadmium solution in the control tubes at a lower temperature than

the water temperature, as will be the case in the roCket reactor.

From the curve shown infigure VI-25(a), it is _seen that about 1 percent in reactivity ............

is used in taking the water fro_m r00_m temperature u_p__to- the nominal , operatin_g tempera, .............

ture. This loss in reactivity must initially be compensated for by a control system. How-

ever, once the reactor is in thi s hotcrit!cal condition, the reactivit[in the hot water can .................

be regained by dropping the water temperature.

To understand how this reactivity can be used to advantage in getting the reactor up

to power and for self-stabilization of power, it is recalled from the discussion in paper V

that the heat which is absorbed by the water in th e reactor is transferred to_e cold hy-
drogen propellant in the heat exchanger. For steady-state operation at a particular power

level, the heat absorbed in the water must equal the heat carried away. Consequently,

for steady-state operation there must be a constant hydrogen flow through the heat ex-

changer. Otherwise, the hydrogen in the heat exchanger will either take away more or

less heat than is put into the water in the reactor, and the water temperature will tend to

go up or down. However, as seen in figure VI-25(a), as soon as the reactor water tem-

perature deviates from this equilibrium operating value , the reactor will go on either a

negative or positive period to get the water temperature back to the operating point. Thus

the reactor power will follow the hydrogen flow to maintain a given water temperature.

The power will follow at a fast rate without reliance on temperature sensors or external

reactor control of any kind. A similar situation exists for the reactivity feedback accom-

_ L- -_--22_

panying variations of the fuel temperature. However, in this case the effect is more

prompt because the hydrogen cools the fuel directly rather than hydrogen cooling the water

through a heat exchanger.

The reactivity change with fuel temperature is a result of the absorptive tungsten re- : .....

sonances undergoing Doppler broadening with increasing fuel temperature and thereby

interacting with a larger part of the neutron slowing down flux. The result is an instan-

taneous increase in resonance absorption with an increase in fuei temperature. Fig-

ure VI-25(b) shows the decrease in reactivity that promptly accompanies increasing fuel
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temperature. The negative reactivity resulting from a change in core average fuel tem-

perature from 68° F to any temperature is shown. About -1.5 percent reactivity is intro-

duced by the fuel coming up to its average temperature of 3300 ° F. Although the maximum

fuel temperature is 4500 ° F, this net Doppler effect is an average over the entire core.

The major part of this prompt negative feedback of reactivity arises from the reso-

nances of the non-184 isotopes, in particular from tungsten 183. The slope of the line

at 3300 ° F is negative and corresponds to the coefficient of reactivity that is chiefly re-

sponsible for the self-stabilizing properties of the reactor at rated power. Experimental

Doppler coefficients for separated tungsten isotopes are presently being measured.

Another reactivity effect that must be accounted for is that due to transient fission

products. The most troublesome of these is xenon 135, particularly for high flux thermal
reactors. The thermal flux for the reference reactor is somewhat greater than 1014 new-

tons per square centimeter per second. During full power operation the core reactivity

worth gradually decreases about 0.4 percent reactivity at the end of 1 hour due to xenon

poisoning. If a reactor is shut down after a period of operation, the decay of this iodine

to xenon results in a buildup of transient xenon which then decays with its own character-

istic half life.

Figure VI-26 shows the reactivity of this transient xenon as a function of time after

shutdown. For this calculation, the reactor is shut down after 1 hour of full power oper-

ation; consequently, the reactivity starts at a steady-state value of -0.4 percent reac-

tivity and rises to a peak of about -8.5 percent reactivity 12 hours after shutdown. This

curve assumes 100 percent retention of the iodine and xenon in the fuel stages. There

is evidence that fission product gases diffuse through the tungsten clad at high temper-

ature. Results of preliminary in-pile experiments are presented in paper VII. If it is

assumed that about 30 percent of the iodine and xenon is lost through the clad by diffusion

at the high operating temperature of the fuel, the transient xenon reactivity has a peak

value of 6 percent reactivity, which means

TABLE VI-4. - SUMMARY OF

REACTIVITY EFFECTS

Reactivity for power tailoring

Temperature defect

10 Hours of operation in 1-hour cycles

Transient xenon override

Design and manufacturing tolerance

Propellant hydrogen reactivity

Total

Reactivity,

ak/k,

percent

-7.4

-2.5

-1.7

-6.0

+1.5

0

-19.1

that this amount will be required to over-

ride peak transient xenon.

A summary of all reactivity effects is

given in table VI-4. These effects total

up to 19 percent so that this amount, which

was available in the unzoned critical as-

sembly, is indeed necessary.

The 7.4 percent for power tailoring

is made up of a little over 1 percent for

flattening the power distribution within the

fuel element, about 2 percent for the gross
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radial power flattening, and about 4 percent for the axial power adjustment required for

the reference core.

The 2.5 percent for the change of reactivity with temperature is made up of 1 percent

for the water temperature and 1.5 percent f0r the fuel_[emperature change: .................

The reactivity required for operating the reactor for 10 hours is about 1.7 percent.

This consists of 0.4 percent for the xenon poisoning accrued in an hour run, 0.8 percent

for long-lived fission product poisoning including samarium, 0.3 percent for fuel trans-

mutation, and 0. 2 percent for an assumed fuel loss of 1 percent through the clad in

10 hours. : :

The 6 percent required for complete transient-xenon override __su_es _35 percent:

loss of iodine and xenon through the clad. If this is a good assumption and _this 6 percent

were available, the reactor could be restarted any time after full p0werruns up to 1 hour

in duration.

An allowance is always required for design and manufacturing tolerances. The
w mi bu ...........1.5 percent can be plus as: ell aS nus, s the minus contingency d-_: titi a so con-

_- cern. The positive reactivity can always be shimmed out, but a new set of fue[eiements

_:_:: or redesign of the core might be requ|r_d_ff a negative all0wanCe"is _n0t:made: ......

_-:_-_ The propellant hydrogen reactivity is very small in this :reactor. There is so much

_: more hydrogen in the water than in the propellant that the hydrogen propellant has an in-

_ ::;: significant effect on reactivity.

It is noted that not all of these reactivities need to be controlled. The reactivities

that do need to be controlled are shown in table VI-5 along with the assumed reactivity
control rates.

The 4.5 percent is for taking the reactor from the cold shutdown to the hot critical

____:. a nominal reactivity control rate, ls Sufficient to allow geti g  iid/ii i aiin ain't ........

_ 80 seconds; however, tn starting up a rocket reactor a lot of hydrogen can be wasted in :

:_:_ TABLE VI-5. - CONTROL CRITERIA

L

|

condition; 2 percent of this 4.5 percent is the shutdown margin and the other 2.5 percent

is the loss in reactivity with emperature. The 0.057 percent per second rate, which Is

Reactivity,

&k/k,
percent

4.5 TM

1.7

'12.2

6.0._

_ _ _ Emergency shutdown

_5

15.0

Rate,

Ak/k/sec,

percent

±0.05"/

±. 0035

-.057

±.014

-5.7

To shorten the time fo r getting up_
to full power after the hydrogen flow has

been started, without increasing the

0.057 percent per second control rate,

the reactor can be brought to this hot

critical condition at a very low power

level without the propellant hydrogen

flowing. The temperature reactivity de-

fect of 2. 5 percent can be used to take the

reactor from the low-power no-flow con-
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dition to 95 percent of full power in about 15 seconds by accelerating the hydrogen flow.

After the hydrogen flow reaches its nominal value, this temperature reactivity will

maintain the core temperatures during hydrogen flow fluctuations by its self-stabilizing

reactivity characteristic. Also, once the reactor temperatures are set at their maximum

operating values, it will be desirable to keep them there throughout the power run. Thus,

the only function a reactivity control system will have during steady-state operation is to

compensate for the slow change in reactivity that occurs during 10 hours of operation.

The 1.7 percent for this will only require the low rate of change of 0.0035 percent per

second. This will allow a fine control of temperature.

Due to the transport delay time in the water system, a larger and separate reactivity

insertion rate may be required for shutting down the reactor at the end of a timed power

run. A delay in achieving this rate can be compensated for by initiating it earlier in the

sequence.

For the transient xenon the 0.014 percent per second rate can put in the 6 percent in

about 7 minutes. This rate is also sufficient to feed in negative reactivity when the tran-

sient xenon is burning out.

Thus, it is seen that the total needed from a reactivity control system is about

12 percent. Also, the largest rate of increase of reactivity needed for this rocket reac-

tor is no greater than is presently used in operating power reactors.

In order to make the finely distributed in-core control systems that are under con-

sideration completely fail safe, independent stored-energy emergency shutdown methods

will probably be required. These should be able to insert 15 percent at this fast rate of

5.7 percent per second. It can then be removed at the slower rate of 0.057 percent per
second.

Investigations have shown that if conventional rods are used to control the 12 percent

in reactivity the axial power distribution is completely distorted. Also, the control rods

investigated caused considerable circumferential power peaking. As a result, the thrust

to weight ratio and the specific impulse of a rocket reactor with control rods would be

less than could be obtained with a finely distributed control system.

On the other hand, reflector control drums distort the radial power distribution, and

large cores cannot be satisfactorily controlled by drums. Figure VI-27 shows various

reactor reflector control effects. The reactivity of a thick beryllium reflector is plotted

as a function of core diameter. The worth of the reflector is large for small diameter

cores and is indicated to be worth about 35 percent in reactivity for a 20-inch-diameter
core.

As the diameter of the core increases, the percentage of neutrons that leak out de-

creases and, consequently, the reflector worth decreases. For a 50-inch-diameter core,

the reflector is worth only about 6 percent in reactivity.

If the reflector control method is used, the percentage of neutrons that return to the
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core is varied by rotating control drums in the reflector. About 40 percent of the total

reflector worth can be obtained by rotating control drums. The estimated control swing

available from control drums as a function of core diameter is shown on the lower curve

of figure VI-27. It is seen that rotating drum control in the thermal reactor can provide

up to 20 percent reactivity control swing for a 15-inch-diameter core. For the 32-inch-

diameter reference core only about a 5 percent swing can be attained. This is much less

than the desired 12 percent. As a result of this limit and other advantages, the liquid

pois0n control system, which is described in paper V, was chosen for the reference

design.

The control worth of the finely distributed soluble poison system is shown on fig-

ure VI-28. The reactivity of the cadmium solution in control tubes is shown plotted

against the cadmium concentration in the tubes.

It is shown that the required reference reactor poison concentrations for a 12 percent

control swing can be attained by very dilute poison solutions without approaching this

assumed solubility limit of 2.38 moles per liter.

The concentrations measured in the clean critical experiments are als0 shown. The

poison concentrations required for the zoned reference design will be lower because some

of the core reactivity is held down by the parasitic poisons added for power tailoring.

The control swing for these lower poison concentrations have been calculated and are

shown as the solid line. It is seen that the experimental points can be smoothly faired

into the calculated curve.

In order to verify the uniformity of the poison concentration throughout the 210 poison

tubes in the core under actual flow conditions, the flow loop shown in figure VI-29 was

made. This consisted of the poison injection point, the inlet pipe, the distribution plenum,

the reentrant control tubes, and the outlet pipe. The construction past the injection point

is identical to that proposed in the reference reactor design.

The results of the experiments showed that the poison concentration in any tube varied

from the average concentration by less than 5 percent at any time. Calculations showed

that a 5 percent decrease in the cadmium concentration in two central poison tubes would

result in only a 0.1 percent rise in the power of the center fuel element. This change is

negligible.

The experimental assembly shown was also used to check the speed of response of

changing poison concentration throughout the control tubes in the core. From calibrated

electrical conductivity cells it was determined that the poison entered the core within

0. 2 second after opening the injection valve. The core poisoning transient lasted for

2 seconds, which is slightly less titan one loop time. This means that the full effect of

a given rate of change of poison insertion is seen in 2 seconds.

In order to make this system fail safe, an additional independent system will probably
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be required, whichwhentriggered, wouldinject gadoliniumnitrate underpressure
directly into the water in the center of the core.

As previously indicated, the soluble poisoncontrol systemwasnot the only onein-
vestigated. Quitea few other systems were considered,but it is felt that aerospacesys-
tems shouldtake advantageof lightweight componentswheneverpossible. A reactor con-
trol system usinga strongneutronabsorbinggascouldbea very lightweightandsimple
system.

The helium 3 isotopehasa thermal absorptioncross sectionof about5000barns
andis obtainedfrom the decayof tritium. Control tubescontaininggaseoushelium 3
couldbe locatedin the sameinterstitial positionsasproposedfor the liquid poisoncon-
trol system.

Figure VI-30 showsa schematicof a noncirculating gaseoushelium 3 control system.
Thebrokenlines represent the in-core control tubes. Thehelium 3 pressure in themis
controlled by operatingsupplyandexhaustvalves. Helium 3is nowsufficiently inexpen-
sive so that it canbe exhaustedto spacewhenanincrease in core reactivity is required.
Only oneexhaustvalve is shown, but more couldbeaddedin series to preventleakage.
Twocompletelyseparablesystemsare indicated. Thesewouldbe radially interwoven
throughthe core sothat either system couldcontrol the core.

A key componentof the system is this 5-mil orifice. Therewouldalso besmall ori-
fices at thefeedendof eachcontrol tube. Sinceflow velocity is limited to sonicvelocity,
theseorifices can reducethe maximumspeedof responseof this systemto a very reason-
able rate. Anothersafety feature is that the gaspressure in the control tubesandfeed
lines inside the main orifices wouldalwaysbe less thanthe waterpressure whichsur-
roundsit. The minimumwater pressure is 100psi.

In the insert of figure VI-30, it is notedthat the control elementsare thin annuli of
gas. This geometryprevents excessiveheatingin the control gasandmakesthe system
thermally stable in the highneutronflux. From a reactivity excursionstandpoint, the
reactor canbemadefail safe byhavingloss of heliumpressure in all systemstrigger
a spring-loadedwater dumpvalve.

Twoexampleshavebeenshownof systemswhich couldcontrol the required amount
of reactivity withoutseriously perturbing the distribution of powerthroughout10hours of
full poweroperation. Sincethesesystemsfunction almostentirely by changingthepar-
asitic neutronabsorptionin the core rather thanby changingthe leakagefrom the core,
they shouldbesatisfactory for cores of anysize.
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Much of the tungsten water-moderated reactor feasibility study effort has been devoted



to the 121-element reference reactor design, which acts as the focal point for the many

technical disciplines involved. However, othe r reactor sizes are possible using the same

reference fuel-element design. Some analyses were therefore performed for larger and

smaller core sizes to define the effects on major nuclear design variables.

The axial power distribution and local radial fuel stage power distribution are rela-

tively independent of size and well defined by the previous analysis for the reference core.

The gross radial power distribution and neutron multiplication, which are the major de-

sign variables affected by size, are now considered.

The characteristics of larger reactor cores are Shown in figure VI-31. The sketch

at the right illustrates the gross radial power flattening technique used for the reference

reactor size. The heavy circles in the central part of the core indicate thatsome of the

fuel elements utilize the neutronic poisoning of natural tungsten support tubes to improve

the gross radial power distribution. For larger reactors, core size is increased by

simply increasing the number of reference fuel elements. The number of fuel elements

containing the more absorptive tungsten isotopic mixture also increases with the core

size. The criterion used to establisha power flattened core is that the+peak:to-average

power should be equal to or less than that of the reference core.

The neutron multiplication factor: as a function of core diameter is given in the upper

graph of figure VI-31 for both radially uniform and radially zoned cores. The lower

graph shows the peak-to-average radial power as a function of core diameter. For every

core size, the fuel-element spacing, fuel-element length, and beryllium reflector thick-

ness are the same as for the reference reactor.

For the uniform cores, the multiplication factor increases with core size as expected

due to reduced neutron leakage. For the zoned cores, the radial peak-to-average power

actually decreases somewhat, showing some improvement over the reference reactor

power distribution. This zoning decreases the multiplication factor at every size, but

nevertheless results in a net gain over the reference core value.

The large cores with low leakage will require the use of some or all of this excess

reactivity gain to obtain a negative temperature coefficient. One means to achieve this

would be to reduce the amount of water in the core by reducing the fuel-element center-

to-center spacing. The temperature coefficient and the stability of the power distributions

in very large cores are areas that should be investigated.

The characteristics of two of the smallest possible separated tungsten cores are

shown in table VI-6. Both these cores are unzoned radially in that natural tungsten sup-

port tubes have not been used to improve the gross radial power distribution. The fuel-

element spacing and length are the same as for the reference reactor. In each case, the

beryllium radial reflector has been sized to minimize the value of maximum-to-average

power across the core. This reflector thickness results from a compromise between

power peaking at the core-reflector interface at large reflector thickness, and power
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TABLE VI-6. - CHARACTERISTICS OF SMALL CORES

[Pitch, 3.16 in. ; 20 volume percent uranium dioxide.]

Fuel Number of

fuel

elements

Core

diameter,

in.

Beryllium

thickness,

in.

Uranium 235 37 21.0 4.0

Uranium 233 19 15.2 3.4

Factor, Radial

kef f power,

1. i1 1.19

1.16 1.16

peaking at the center of the core for small reflector thickness. The radial reflectors on

these small cores have sufficient reactivity for reflector drum control systems.

The smallest uranium 235 core, listed first in table VI-6, is a 37-element core that

is 21 inches in diameter. With a 4.0-inch beryllium radial reflector it has a neutron

multiplication of 1.11 and a maximum-to-average radial power of 1.19. This core would

not have sufficient reactivity for overriding peak xenon, but it would have a sufficient

amount for axial power tailoring so that 39 inches of fuel will give the same 4000 ° F ex-

haust gas temperature as the reference core.

The second core uses neutronically superior uranium 233 as fuel so this core can be

made smaller. It has 19 fuel assemblies in a core diameter of 15.2 inches. With a

3.4-inch beryllium reflector it has a neutron multiplication of 1.16 and a maximum to

average radial power of 1.16. This core is close to having sufficient reactivity for both

axial power tailoring and transient xenon override.

Figure VI-32 shows a cross sectional view of this core. Only 15 kilograms of ura-

nium 233 fuel are required for the 19 fuel assemblies. A water-cooled beryllium reflector

with 12 rotating control drums is indicated.

Although this reactor is shown schematically, it is the actual size of a reactor capable

of producing a power of 250 megawatts and hydrogen exit temperature of 4000 ° F from its

19 fuel assemblies. The core diameter is 15 inches and primary reflector diameter is

22 inches. If it were desirable to incorporate the water-to-hydrogen heat exchanger, a

secondary water reflector would be added. This would increase the pressure vessel

diameter to about 30 inches. The weight of such a reactor, pressure vessel, pumps,

nozzle, and piping is only 2500 pounds.

Since the dynamic head limit and therefore the power per fuel element of the reference

concentric ring fuel element can be increased by employing the honeycomb type of fuel-

element design (see paper VIII), the 250 megawatt power mentioned may be uprated to as

much as 360 megawatts.
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SUMMARY

By combination of analysis and experiment, the required margins of reactivity for a

reference tungsten water-moderated reactor design have been confirmed. The ability to

achieve the negative water temperature reactivity required for self-stabilization in the

reactor startup and at operating power has also been confirmed.

Use has been made of a single separated mixture of tungsten isotopes enriched in the

..... 184 isotope in conjunction with natural tungsten. Withthese mixtures, it has bee n shown

that the radial and axial power distributions in the core can be adjusted for good heat

transfer. The features of finely distributed in-core control systems have also been con-
sidered.

In conclusion, it appears that the nuclear aspects of the tungsten water-moderated

reactor are well understood and that the technology is advanced to the p;int where reac-

tor designs for any power level may proceed.
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VII.FUELELEMENTS AND FUEL-ELEMENTMATERIALS

:L

the nuclear rocke(is to be realized/ _e norn_in_l operating temperature was chosen to be

_ 45000 F. Although no specific space mission has been defined, the operating time is as-

sumed to be short and consistent with high-thrust propulsion and small gravity losses.

To allow for development testing, operating time was fixed at 10 hours. Without a spe-

cific mission, the number of startups and shutdowns are also unknown. Again to allow for

•_._ development testing, the_thermal cycH_ capability goal was set at 25 cycles. =Some fuel

_;_ losses can be tolerated, but to keep the excess reactivity necessary to compensate for

_! fuel loss in line, the allowable fuel loss was taken to be less than 1 percent. In addition

..... to the goals listed, good high-temperature strength is necessary; that is, the presence of

._,i_-_:-.,__ fuel should not compromise the strength of tungsten any more than is necessary.
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Armin F. Lietzke, Neal T. Saunders, GordonK. Watson,
Richard E. Gluyas, and Jack G. Slaby

LewisResearch Center

INTRODUCTION

Fuel elements and fuel-element materials have been investigated both by NASA and

by contractors to NASA as part of the overall tungsten water-moderated rocket reactor

program. Th_s investigationhas includeda stuclzof the behavior of urar_iu_n_zbearing

tungsten composites in terms of the abilityof tungsten to containthe less refractory fuel

and the properties ofthese composites. The investigationhas also involved the selection

of fuel-element confi_ationsi_=_echniq_s for_ab_r_ca_ingtheses_pes, and_tho Capa- : "

bility of the configurations to operate under the conditions of interest.

As a basis for the work, certain goals were established early in the program as fol-
lows:

Operating temperature, OF ............................... 4500

Operating time, hr .................................... 10

Thermal cycling capability, cycles ............................ 25

Fuel retention, percent loss ............................... <1.0

High-temperature fUel-element operation is essential if the specific imp_sepotential of

i f



At the outset of this program, it was decided that these goals could be met best with

dispersion-type fuel: composites with a continuous matrix of tungsten. Tungsten has the

highest melting point of all the metals, almost 1700 ° F above the selected fuel-element

operating temperature. In addition, it has relatively good strength and excellent thermal

conductivity over the entire operating temperature range. In fact, its room-temperature

conductivity is nearly equal to that of aluminum. Another advantage is that tungsten does

not react at all with hydrogen, which was the propellant in this system.

However, tungsten also has some drawbacks for use in this type of reactor. First of

all, tungsten is extremely brittle at room temperature, but at a few hundred degrees

above room temperature, tungsten transforms to a ductile state and remains ductile at

temperatures between this "transition temperature" and its melting point. Because of

its room-temperature brittleness and its stiffness at higher temperatures, tungsten is

difficult to fabricate. To overcome this, rather novel fabrication techniques and very

high temperatures must be used to fabricate tungsten.

Uranium dioxide was chosen as the fissionable fuel to go with the tungsten matrix of

the dispersion-type fuel elements. This selection was based primarily on the following

factors:

(1) Uranium dioxide is one of the most refractory fuels, having a melting point of

about 5000 ° F (approx. 500 ° above the selected fuel-element operating temperature).

(2) It has a fairly high uranium density of 9.6 grams per cubic centimeter.

(3) It is, for the most part, not reactive with either tungsten or hydrogen.

Of course, uranium dioxide also has some disadvantages. Its poor high-temperature

strength and thermal conductivity are partially compensated by the use of uranium dioxide

as a dispersoid in a continuous matrix of tungsten. The dispersion takes full advantage

of the good strength and thermal conductivity of tungsten. There are two other problems

associated with uranium dioxide that are not as easily solved: its high vapor pressure at

high temperature and its tendency to dissociate at high temperature. Both these char-

acteristics can lead to gross loss of fuel from the fuel elements. Because of these two

problems, much effort has been directed toward finding methods to keep fuel losses to

tolerable levels.

In addition to the fuel retention problem, studies were made of two specific fuel-

element configurations. The configurations were examined from the standpoints of fabri-

cation, the ability to withstand the aerodynamic forces of the high-velocity hydrogen, and

thermal stresses within the element. Support of the fuel elements under axial drag loads

and vibratory lateral loads was studied also.

218

FUEL RETENTION

In order to evaluate the effects of fuel vaporization and dissociation and to develop



methodsfor controlling fuel loss due to these factors, it was first necessary to fabricate

suitable test specimens. These specimens could also be used to determine the mechanical

properties of the fueled composites.

Fabrication and Claddingof Flat Plates

Several methods were developed to produce fueled test specimens that had uranium

dioxide particles dispersed in a continuous tungsten matrix. These methods included

powder metallurgy techniques that use mixtures of tungsten and uranium dioxide particles

and techniques that involve the consolidation of tungsten-coated uranium dioxide particles

into dense bodies.

Early in the program, it became obvious that uranium dioxide was being lost from

the composites during continuous heating. This problem is caused by the fact that, at the
operating temperature of 4500 ° F, uranium dioxide has a vapor pressure of about 3 milli-

meters. This high vapor pressure 'can cause large amounts of fuel loss from tungsten

uranium dioxide composites by vaporization of all surface-exposed uranium dioxide parti-

cles and also interconnected, internal uranium dioxide particles. Since a large amount of

fuel loss cannot be tolerated in reactor fuel elements , methods to prevent fuel vaporiza-

tion had to be developed in addition to the development of fabrication methods. One

method of reducing loss is the use of a thin (0.001 in. ) layer of unfueled tungsten on all

the surfaces of the composite. The use of tungsten-coated uranium dioxide particles also

has been shown to reduce the vaporization losses.

The method developed at Lewis for the fabrication of flat plates from mixtures of

tungsten and uranium dioxide powders is basically a powder metallurgy and hot-rolling

operation, which is shown schematically in figure VII-1. Weighed amounts of 0.88-

micron tungsten powder and uranium dioxide powder are blended together, and 2 percent

(by weight) of stearic acid is added as a binder. The mixture is then cold compacted into

flat plates and sintered at 3100 ° F to yield a cermet plate with a density in excess of

90 percent of theoretical. Additional densification is achieved by rolling at approximately

3500 ° F. The finished cermet plates are about 20 mils thick and have a density in excess

of 99 percent of theoretical. This hot-rolling technique has been successful in the fabri-

cation of plates that contain up to about 40 volume percent uranium dioxide.

The top and bottom surfaces of the plates may be clad during the rolling operation

with a thin layer of unfueled tungsten by roll bonding wrought tungsten foil to the cermet,

as shown in figure VII-1. This method has proven quite useful since high quality cladding

can be easily bonded to the major surfaces of the fuel plate. The resultant cladding is

fully dense, very uniform in thickness, and metallurgically bonded to the core.
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Several photomicrographs of rolled fuel plates are shown in figure VII-2. These

fuel plates contained 10, 20, 30, and 40 volume percent of uranium dioxide. The white

areas in the photomicrographs are tungsten, and the darker areas are uranium dioxide

particles. The high density of the tungsten matrix and the uniformity of the tungsten

cladding that was applied by roll bonding should be noted. The fuel particles were initially

spherical and about 50 microns in diameter before consolidation, but they were elongated

somewhat during rolling.

With the roll-bonding technique, however, the edges of the plates are still unclad, and

some fuel can be lost at high temperatures from these edges. Various cladding methods,

such as powder sintering and plasma spraying, have been effectively used to clad the

edges of the fuel plates, but these methods are essentially limited to composites of simple

geometry.

Other techniques were investigated, therefore, for cladding all exposed surfaces with

one process, and vapor deposition techniques were found to be the most promising. Vapor

deposition employs the hydrogen reduction of a tungsten halide (WF 6 or WC16) at elevated
temperatures to deposit tungsten metal on heated surfaces. This deposition results from

either of the two following reactions: WC16 + 3H 2 - W + 6HC1 or WF 6 + 3HC1 -_ W + 6HF.

A typical etched photomtcrographof a clad composite is shown in figure VII-3. The vapor-

deposited cladding is fully dense and metallurgically bonded to the fueled core. The prime

advantage of this cladding method is that the edges of the cermet as well as the major

surfaces can be clad by vapor deposition in one operation. This method has been used

primarily on flat plates, but it is felt that, with further development, the method can be

applied to more complex configurations.

Consolidation of CoatedParticles

The use of tungsten-coated uranium dioxide particles is also effective in the reduction

of fuel vaporization losses, because each uranium dioxide particle is completely encapsu-

lated in tungsten. This encapsulation prevents contact of adjacent uranium dioxide parti-

cles and prevents exposure of the uranium dioxide particles at the surfaces of the com-

posites. In addition, the tungsten coating on the uranium dioxide particles results in a

more uniform fuel dispersion in the composites.

The consolidation of tungsten-coated uranium dioxide particles is complicated by the

fact that ordinary sinteringtechniques cannot be used becausethe large tungsten - uranium

dioxide particles do not sinter well. Two techniques, however, have been developed for

the consolidation of these particles. These two methods, hot roll compaction and hot

isostatic compaction, are quite similar, as shown in the process outline in figure VII-4.

In both processes, the tungsten-coated uranium dioxide particles are loaded into flat
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molybdenum cans and Vibratory compacted to a density Of about 65 percent of theoretical.

The canned particles are then heat treated in hydrogen at 2000 ° F to remove any surface

oxide on the particles.
_: : : Z

:::_ in the roll-compaction process, densification of the particles is achieved by hot roll-

ing at about 3100 ° F. Five roll passes are required to obtain the desired reduction of

about 60 percent in thickness.

The molybdenum cans for isostatic compaction must be evacuated and sealed prior to

compaction. This is accomplished in an electron-beam welder. Compaction of the sealed

cans is then achieved by a combination of temperature (3000 ° F) and pressure (30 000 psi)

in an autoclave. The molybdenum canning material in both processes is removed with a

nitric acid solution, which attacks the molybdenum but does not harm either the tungsten
or the uranium dioxide particles encapsulated in tungsten.

Typical microstructures of plates produced =by both methods are shown in fig-

ure VII-5. The dispersion of fuel in the plate produced by roll compaction is quite uni-

form, but the uranium dioxide particles are rather elongated, which could result in ant-

sotropic properties in the fuel element. The uranium dioxide particles in the isostatically

_-_ compacted plate are no longer spherical, but the amount of distortion is much less than

_- that obtained with roll compaction, and therefore, hot isostatic compaction is felt to be

the more promising process.

Fuel Vaporization Results

I

__ cladding of tungsten.

: _ i_: :

| _:

: z:_ ¸

)

Various types of tungsten - uranium dioxide composites were heated to 4500 ° F in

flowing hydrogen, and the resulting fuel loss was measured. The results of these tests are

summarized inbar graph form in figure VII-6. The first bar indicates the large amount

of fuel that was Iost fr0m ur_clad composites produced from mixtures of tungsten and

uranium dioxide powders. This fuel loss was reduced to less than 1/2 percent by cladding

the surfaces of similar composites with about I-rail-thick tungsten, as indicated by the

second bar. The loss from unclad samples produced from coated particles also was less

than 1 percent. These results indicate that the use of either surface claddings or coated

particles is effective in keeping fuel vaporization at tolerable levels. The combined use

of these methods yields even better results and should improve the reliability of the fuel

elements, since a fuel element with a defective surface cladding can still have the con-

tinuous tungsten matrix that prevents extensive fuel losses. It is recommended, therefore,

that the fuel elements be fabricated from coated particles and clad with a thin surface
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Fuel Loss During Thermal Cycling

Tungsten - uranium dioxide fuel elements must be able to operate under thermal cycl-

ing conditions such as those that would be encountered in preflight ground testing or in

successive reactor startups and shutdowns during flight. The effect of thermal cycling on

fuel loss and on the microstructure was determined on tungsten-clad tungsten - uranium

dioxide composities. The fuel loss in weight percent against the total time at 4500 ° F was

measured for such composites in a hydrogen atmosphere. Two curves are shown in fig-

ure VII-7. One curve shows the fuel loss that results from constant heating conditions

(i. e., no cycling), while the other curve shows that a substantially greater amount of loss

resulted where successive 2-hour thermal cycles were used. Typical photomicrographs

of cross sections of specimens tested in each way for a total of 10 hours at 4500 ° F are

shown in figure VII-8. The specimen on the left was continuously heated for 10 hours,

and the one on the right was cycled for five 2-hour cycles. The cycled specimen shows

gross degradation. The grain boundaries of the unetched structure are well defined be-

cause of the migration of fuel through these paths. The invasion of the tungsten grain

boundaries by the fuel weakened the matrix so much that several tungsten grains were

pulled out during polishing, even though very careful polishing techniques were used. The

weakened structure eventually allows exposure of uranium dioxide to the atmosphere, and

vaporization occurs subsequently.

Cause of Migration and Fuel Loss

The cause of this fuel migration problem can be described best by part of the uranium-

oxygen phase diagram shown in figure VII-9 (from ref. 1). In this diagram, the axes rep-

resent temperature and composition expressed in terms of the oxygen-to-uranium ratio.

For stoichiometric uranium dioxide, the ratio of oxygen to uranium is 2. Heating uranium

dioxide to 4500 ° F and holding the material at this high temperature level cause the ura-

nium dioxide to lose oxygen, as represented by the reaction - UO 2 : UO2_ x + O, and the

composition changes to a substoichiometric composition. The loss of oxygen occurs

whether a specimen is heated continuously or thermally cycled. On cooling, however, a

reaction occurs that can account for the accelerated fuel loss on thermally cycling. As the

temperature decreases, the solvus line is crossed where liquid uranium metal separates

out, as represented by the reaction UO2_ x -- UO 2 + U. The molten uranium migrates

into the grain boundaries of the tungsten matrix, where it can reoxidize or hydride in the

hydrogen atmosphere. These hydriding and oxidation processes can result in volume

changes, which can then pry apart the grains of the tungsten matrix. Thermal cycling
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aggravates this problem, since each additional cycle causes more uranium to be trans-

ferred by this mechanism from the uranium dioxide particles to the grain boundaries.

It is obvious that this reduction and disproportionation of the fuel cannot be tolerated

to any appreciable extent in reactor fuel elements. Therefore, a search has been made

for methods that would reduce these degrading effects.

Methods for Control of Fuel Loss

Three promising methods have been found for the reduction of fuel loss during ther-

mal cycling. The first method consists of the addition of thorium dioxide particles of

less than 1-micron diameter to the tungsten matrix. The second method utilizes uranium

dioxide particles of about 1-micron diameter instead of the 50-micron-diameter particles

usually used. The third method consists of the addition of other oxides in solid solution

with the uranium dioxide.

The improvements that result from each of these approaches are thought to be due to

different causes. The role of oxides, like calcium oxide, in solid solution with the ura-

nium dioxide is to increase the thermodynamic stability of the uranium dioxide to de-

composition. Where fine particles of uranium dioxide or thorium dioxide are used in

tungsten - uranium dioxide composites, the decreased rate of fuel loss probably is asso-

ciated with an increased area of interface between the ceramic particles and the tungsten

matrix. This area is increased by a factor of about 5 for the amount of thorium oxide

added to the tungsten matrix to a factor of about 50 where micron size uranium oxide is

used.

The relative effectiveness of these three methods is compared in figure VII-10,

which shows the fuel loss as a function of the number of 10-minute cycles to 4500 ° F in

flowing purified hydrogen at 1 atmosphere. Flowing hydrogen is used to remove contin-

uously reaction products and to provide continuously a pure hydrogen environment around

the specimens. The curve for an ordinary composite is shown for comparison. All

specimens contained the same amount of uranium dioxide (20 volume percent of the com-

posite was uranium dioxide in fig. VII-10). It is important that the amount of uranium

dioxide be the same since, in all specimens, it is known that the rate of fuel loss in-

creases with fuel loading. Although each method extended the composite lifetime, the

longest lives in terms of fuel loss were obtained through the use of either micron-size

uranium dioxide or by additions of calcium oxide in solid solution with the uranium diox-

ide.

Since the fuel losses from composites with micron-size uranium dioxide and from

those with uranium dioxide stabilized with calcium oxide are about comparable, other

properties of the composites were studied to choose the better of the two methods of



stabilization. One property that showed a significant difference was the tensile strength.

On the basis of tensile strength data presented later in this paper in the section on

mechanical properties (see fig. VII-11), composites with oxide stabilizers in 50-micron

uranium dioxide particles were selected as most promising for further study. The use

of fine uranium dioxide, however, should not be ruled out completely. Composites with

fine uranium dioxide are probably worthy of further development, but the present effort

has been concentrated on the use of oxide additives.

A series of screening studies has been carried out on a large number of oxides.

Most of these oxides were selected on the bases of solubility in uranium oxide, absence

of low melting point eutectics in the concentration range of interest, and stability to de-

composition. The amount of each additive used was 10 mole percent in the uranium diox-

ide. All the composites tested contained 35 volume percent uranium dioxide. In figure

VII-12, the relative fuel losses are plotted against the number of 10-minute cycles to

4500 ° F in hydrogen. The additives fall in several classes of effectiveness as stabilizers.

The curve for unstabilized uranium dioxide is given for comparison. The addition of

titanium dioxide has no stabilizing effect on components. Calcium oxide falls in the same

class with thorium oxide. In this case, the thorium dioxide is added in solid solution in

the uranium dioxide, not in the tungsten matrix. As can be

ber of rare earth oxides perform better than calcium oxide.

ing runs, yttrium oxide and cerium oxide were selected for

were representative of the two best groups of oxides.

seen in figure VII-12, a num-

On the basis of the screen-

further study because they

An oxide from each of the two best groups was selected primarily to make sure that

the oxides that were in the best group under the conditions of the screening test are the

oxides that are best under all conditions, particularly in the case of specimens completely

clad with tungsten. It is of interest also that yttrium oxide and cerium oxide are different

in that cerium can have a fairly stable valence state of +4 as well as a stable valence

state of +3; it is possible that some difference in stabilizing behavior can occur because

of this.

Figure VII-13 shows the results of more extensive tests that used either yttrium

oxide or cerium oxide as a stabilizer of uranium dioxide in fully clad composites to see

if the objective of 1 percent or less of fuel loss could be met after 25 thermal cycles to

4500 ° F. The loss of uranium dioxide in weight percent is plotted against the number of

10-minute cycles to 4500 ° F in flowing, purified hydrogen at 1 atmosphere pressure. The

curve for composites with unstabilized uranium dioxide is included for comparison. Fuel

loss curves are given for composites stabilized with 5 and 10 mole percent of each addi-

tive. For both additives at both concentrations tested, the goal of 1 weight percent or

less of fuel loss after 25 cycles is easily met. To get a measure of the relative effec-

tiveness of the yttrium oxide and cerium oxide additives and of the additive concentration

levels studied, the cycling was carried beyond 25 cycles. Of the concentrations of addi-
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E=II rives tested, the 10 mole percent level gave the longest life. Although these data seem to

indicate that greater amounts of additives might give even better results, 10 mole percent

of additive was not exceeded because an increase in ceramic loading has an adverse effect

on the mechanical properties of the composites. Comparison of these fuel loss curves

shows that composites with cerium oxide lose somewhat less fuel under the conditions of

this test than composites with yttrium oxide; further testing of composites with these

additives, however, is needed before a final choice can be made.

E
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Effect of Operating Variables on Fuel Loss

Although the results look quite promising under the test conditio_ns used, actual oper-

ating variables could be quite broad. The fuel loss curves, for example, have been shown

for a maximum cycling temperature of 4500 ° F, but "hot spots" conceivably could cause

higher temperatures in an actual operating reactor. Also, cycling conditions may involve

longer or shorter holds than the 10 minutes at temperature that were used in the tests

discussed. Furthermore, the tests were made at 1 atmosphere hydr0gen pressure,

whereas an element in a reactor would experience much higher pressures (e. g., about

600 psi). Finally, the effects of fission heating must be considered.

The effect of maximum temperature during cycling is shown in figure VII-14, where

the fuel loss is plotted against the number of cycles for two different temperatures. Com-

parison of these curves shows that fuel loss is increased by an increase in temperature

from 4500 ° to 4700 ° F. The loss after 25 cycles to 4700 ° F, however, is not more than

2 percent.

The effect of time at temperature during each cycle appears in figure VII-15. The

fuel loss in weight percent of uranium dioxide is plotted against the number of cycles for

different hold times at temperature for each cycle. The hold times represented are 120,

10, and 2 minutes: =.!The 1-percent fuel loss level is indicated by the horizontal dashed

line. ) The 1-percent fuel loss level is reached after 6 cycles for the 120-minute cycles,

after 60 cycles for 10-minute cycles, and after 80 cycles for 2-minute cycles. The bar

graph shown at the bottom of figure VII-15 shows the total operating time to 1-percent loss

for the three different cycles. For the 120-minute cycle, the total time to 1-percent loss

is 12 hours; for the 10-minute cycle, it is 10 hours; and for the 2-minute cycle, it is

about 3 hours. Thus, for long hold times, the total operating time goal of 10 hours is

met, but the number of cycles is small, and for short operating cycles, the total time to

reach 1-percent fuel loss is less than 10 hours, but more than 25 cycles can be completed.

When 10-minute cycles are used, both 10-hour total operating time and more than 25 cy-

cles are possible. Therefore, reactor operating cycles, particularly during ground test-

ing, should be carefully selected.
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The effect of hydrogen pressure on fuel loss has been measured on fully clad com-

posites with 35 volume percent uranium dioxide stabilized with 10-mole-percent cerium

oxide. The percent of fuel loss is plotted against the number of cycles to 4500 ° F in hy-

drogen at 1 atmosphere and at 600 pounds per square inch in figure VII-16. Thus far,

data in 600 pounds per square inch hydrogen have been obtained through 25 cycles. Be-

fore these data were available, it was thought that increased hydrogen pressure might

cause an increase in fuel loss. Obviously this problem did not materialize; the loss up

to 25 cycles is essentially the same at 600 pounds per square inch as it is at 15 pounds

per square inch and well below the 1-percent level indicated by the horizontal dot-dash

line.

Apparently, no serious fuel loss problem is introduced by temperature excursions,

changes in cycling program, or high-pressure hydrogen. All the fuel loss results dis-

cussed so far, however, have been in out-of-pile furnace tests. Now it is important to

know if irradiation in a reactor can have adverse effects on tungsten - uranium dioxide

composites.

The nuclear rocket application requires relatively low values of total exposure (nvt)

and low values of burnup. The total burnup for a high-thrust mission is on the order of

0.2 percent. Therefore, one would not expect any noticeable radiation damage or fission

product pressure buildup for this application. In-pile capsule tests nevertheless have

been conducted on fuel-element material specimens to check the validity of furnace tests.

A typical capsule used in these tests is illustrated in figure VII-17. A fueled specimen

that measures approximately 1- by 1- by 1/32-inch is held by tungsten wires inside a

molybdenum thermal radiation shield. The radiation shield is supported from the capsule

walls. The capsule is made of stainless steel and sealed in a vacuum by electron-beam

welding.

The specimen is heated by fission of the fuel in the specimen, and the heat is re-

moved by thermal radiation to the capsule walls, which are cooled by water flowing over

the outside surface of the capsule. Test temperature is established by fuel loading, the

number of radiation shields, and the incident thermal flux. Fuel loss tests were conduc-

ted for 4 hours at temperatures from 3500 ° to 5000 ° F. Weight loss measurements and

metallographic examination indicate no difference between fission heating and furnace

heating. No special effort was made to determine the effect of clad thickness, but it was

noted that a clad thickness of 1 rail is sufficient to contain the uranium dioxide. Although

in-pile tests to date do not include thermal cycling in hydrogen, fission heating by itself

does not appear to pose any new problems.

Fission product retention was also of interest because this concept utilizes a thermal

reactor and must therefore contend with transient xenon poison if an immediate restart is

required. Although xenon 135 is the fission product poison of concern, its primary source

is from the decay of iodine 135. Any xenon 135 or its precursors released from the fuel
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elementsduring operationdonot haveto be considered in the _K required for restart.

Because iodine is a gas at the proposed operating temperatures, measurable loss of iodine

as well as xenon might be expected, especially when considering the diffusion rates at

high tomperature.

The amounts of iodine present in the capsules after 4-hour irradiation were measured

for temperatures from 3000 ° to 5500 ° F. Only preliminary data are available, and these

results are in figure VII-18, where percent iodine release is plotted against specimen

temperature. The percent release was found to increase as the temperature v_s in-

creased. At the reference design temperature of 4500 ° F, about 12 percent of the iodine

was released. No swelling of the test specimens was observed. The gas release shown

in figure VI_-18 as well as the low burnup apparently account for the absence of swelling.

MECHANICALPROPERTIES

Knowledge of the mechanical properties of fuel-element materi_s is necessary in the

design of the reactor. All the current mechanical property data were obtained on rolled

plates prepared by the hot-rolling powder metallurgy techniques. The use of tungsten-

coated uranium dio_de particles compacted by either hot rolling or is0static pressing,

rather than individual tungsten and uranium dioxide powders, could possibly result in

changes in the data. This possibility is currently being investigated.

Tensile Properties

The results of tensil e tests conducted at 4500 ° F on fuel plates with 0 to 50 volume

_ percent uranium dioxide are shown in figure VII-19. The strength ofun/ue!ed tungsten

(shown on the left) is about 3700 pounds per square inch. The ductility (not shown) asso-

_ clated with this is about !0- to 15-percent reduction in area. As the fuel loading is in-

=_- creased to about 30 volume percent uranium dioxide, the strength of the composites in-

_--: creases slightly, and very little change in ductility occurs. As more fuel is added, how-

ever, the strength begins to decrease rapidly. From these results, it appears that the

loading of the fuel elements should be less than about 35 volume percent uranium dioxide

in order to avoid the region of rapidly decreasing strength. If more strength is required,

it might be possible to use a stronger tungsten alloy in place of the unalloyed tungsten used
in these studies.

The effect of test temperature on the tensile strength of several different tungsten -

uranium dioxide composites with 20 volume percent uranium dioxide is shown in figure

VII-11. It should be noted that the strength of the composites with fine (~1_) uranium

227



dioxide particles is relatively low at high temperatures as compared with composites with

50-micron-diameter uranium dioxide particles, which were also tested at a high tempera-

ture. This low strength is believed to be due mainly to interconnection of the fine uranium

dioxide particles. Very little change in strength was observed in these tests when a metal

oxide stabilized fuel (calcium oxide stabilized) was used in place of the standard uranium

dioxide. A significant increase in the strength of the composites containing 50-micron-

diameter uranium dioxide was achieved by the addition of 2 volume percent of fine (1/_)

thorium oxide particles to the tungsten matrix. Thus, a thoriated matrix might be used in

combination with a metal oxide stabilized fuel to increase the strength of the composites.

If tungsten-coated uranium dioxide particles are to be used, however, methods would have

to be developed for the introduction of fine thorium oxide particles into the tungsten.

Creep-Rupture Properties

A series of creep-rupture tests was performed on the tungsten - uranium oxide com-

posites over a range of temperatures and fuel loadings corresponding to those intended for

use in the tungsten water-moderated reactor. Some of the results of this study are shown

in figure VII-20. It can be seen that, as fuel is added to the composite, the maximum

allowable stress that will give a 10-hour rupture life decreases.

Modulus of Elasticity

The deflection of a fuel element under a given load, Young's modulus, is another im-

portant design property. A contracted effort has been completed recently in this area,

and the results of this study are shown in figure VII-21. The modulus values shown here

for tungsten are higher than other static test data reported in the literature. Test condi-

tions in this study were very carefully controlled, and a great deal of care was taken to

ensure that creep did not affect the results of these tests.

Composite plates containing 10 to 40 volume percent uranium dioxide were tested,

and all the results fall in the shaded area of the figure with very little difference in the

values for the different fuel loadings. The rapid decrease in the moduli of the composite

materials between 3500 ° and 4000 ° F is not fully understood, but one possible explanation

is that in this temperature range the modulus of the uranium dioxide decreases rapidly and

contributes less and less to the overall moduli of the composites.
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DESIGN PARAMETERS

In addition to containing fuel, the fuel elements also transfer the heat energy to the

propellant. The designer has certain parameters under his control that should be selected

to accomplish, most effectively, the transfer of heat and to provide sufficient mechanical

strength in the fuel elements for the operating conditions.

m

Length-to-Diameter Ratio

In order to achieve maximum propellant temperature, the fuel elements must operate

at the maximum temperature consistent with the materials of construction, and the heat-

transfer flow passage must have a length-to-diameter ratio large enough that the propel-

lant temperature approaches the fuel-element surface temperature.

The smallest length-to-diametez; ratio is attained when the entire fuel element oper-

ates at the maximum allowable temperature. The length-to-diameter ratio required is

shown in figure "v-lI-22. The propellant-to-surface-temperature ratio is plotted against

axial position for Reynolds numbers of 10 000, 20 000, and 60 000. As the gas enters the

reactor, the temperature ratio is low, and it increases as shown in figure VII-22. In or-

der for the propellant temperature to approach within 10 percent of the fue]-element sur-

face temperature, it is apparent that a flow passage with a length-to-diameter ratio of

240 or greater is required. If a reactor is 3 feet long, the equivalent diameter should be

150 mills at a Reynolds number of 10 000 and 100 mils at a Reynolds number of 60 000.

Actually, slightly larger length-to-diameter ratios than shown here will be required be-

cause axial power distributions corresponding to constant surface temperature may not be

practical from a reactor physics viewpoint. Nevertheless, an equivalent passage diameter
of 1/8 inch is about the size of interest.

Interrelation of Operating Parameters

The Reynolds number is affected by the mass velocity, or the flow rate per unit flow

area. The mass velocity is most significant because, with a fixed outlet temperature, it

determines the power and thrust from a given size reactor. The interrelation of reactor

parameters is shown in figure VII-23. Core pressure drop and outlet Mach number are

plotted against mass velocity for several chamber pressures. The variation in dynamic

head at the reactor outlet is also shown in figure VII-23. The dynamic head pV2/2g is

_: a measure of the aerodynamic forces acting on the fuel elements. As the mass velocity is

increased, the thrust increases. (The thrust per unit flow area is the product of mass
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velocity andspecific impulse.) There is obviously some limit on flow rate through a

given size reactor; this flow rate is dictated by core pressure drop, aerodynamic loads

on the fuel elements, or a Mach number limit as a result of flow sensitivity at high Mach

numbers.

Although it is impossible to choose an optimum set of operating conditions from a

plot such as this, figure VII-23 does provide an insight into the requirements for various

operating conditions. For example, any effort to increase performance by operation at

high values of mass velocity poses three requirements evident in the figure.

(1) A fuel element capable of withstanding high dynamic head is required.

(2) A core structure capable of supporting high pressure drop is necessary. Core

pressure drop rapidly reaches excessive values unless high pressure levels are used.

(3) High inlet pressure results. The inlet pressure is the sum of the outlet pressure

and the core pressure drop. The significance of high inlet pressure is that the pumping

power may exceed the pumping power available from a topping turbine unless special pro-

visions are made.

From a fuel-element viewpoint, the dynamic head is of the most concern, because it

is desirable that this parameter does not severely limit the performance. The aerody-

namic forces that a fuel element can withstand depends on the mechanical properties of

the materials and the fuel-element configuration.

Fueled Material Composition

The composition of the fueled material to be used in this reactor concept involves the

compromise of a number of design factors. These factors can be discussed by writing the

uranium dioxide loading as some fraction _ of the total volume of solid material in the

fuel element, such that

VU02 = _U02 + VW)

where V represents the volume occupied by the material identified in the subscript.

total volume of solid can be written in terms of the geometrical dimensions.

that the material has two major surfaces, the total volume is given by

(1)

The

Considering

where S is the surface area and

definition of equivalent diameter

(Vuo 2 + Vw) = s t (2)2

is the thickness of the fueled material. By using the
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where A is the flow area and L isthe lengthof the heat-transferflow passage, equa-

tions (I)and (2) can be combined to yield

VUO2 = 2 L at

A D

The fuel elements must contain sufficient uranium dioxide in a given size core, rep-

resented by A, to satisfy criticality requirements plus enough additional fuel to allow for

excess reactivity associated with startup or restart, loss of fuel which may occur during

operation, and nonuniform loading to tailor+_he power distribution.

The increase in average fuel loading, which is included to tailor the power distribu-

tion, offers some room for compromise. The fuel elements must, however, contain suf-

ficient uranium dioxide to provide the necessary reactivity. The minimum volume of

uranium dioxide is, therefore, established by nuclear considerations: The length-to-

diameter ratio is established by heat transfer, as previously mentioned. Consequently,

the product at is essentially fixed.

The interplay between a and t isof concern, therefore. As _ is decreased, a

greater portion of the material is tungsten' As t is increased to keep the product

constant, the quantity of tungsten is increased further. Tungsten ts present only to serve

as a structure to hold the fuel. It is desirable to use a minimum quantity of tungsten con-

sistent with this need for two reasons; the reactor will be unnecessarily heavy otherwise,
+ ....

and tungsten is a parasitic absorber of neutrons, even when enriched.
As _ is increased and t is decreased, the mechanical pr6pert{es are affected ad

versely, and the structure becomes too thin to withstand the aerodynamic forces of the

high-velocity hydrogen. The minimum value of t will, of course, depend on the fuel-
. ___ = +

element configuration.

The selection of values for _ and t, therefore, involves a number of disciplines;

that is, nuclear, heat transfer, material properties, and structure_ :_'reliminary studies

have shown that a reasonable Compromise f6i" this reactor concept is a thickness t of

20 mils, an average uranium dioxide loading of 20 volume percent and, to allow for varia-

ble loading to tailor the power distribution, a maximum uranium dioxide loading of about

30 volume percent. Core size and fuel-element configuration may alter this compromise

to some extent.

+ +

f

= : ± : ::: [}i_
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FUEL-ELEMENTCONFIGURATIONS

Various fuel-element configurations have been considered. Among these are ele-

ments made of flat plates, concentric cylinders, tube bundles, and fine grids such as a

honeycomb. Most of these configurations were considered only briefly because of expec-

ted performance limitations or fabrication difficulty. Two configurations, however, the

concentric cylinder and the honeycomb, were selected for further study. These geome-

tries are discussed in the following paragraphs. Both elements are the same size, each

has flow passages with an equivalent diameter of 1/8 inch, and beth require variable fuel

loading to compensate for the self-shielding effects discussed in section VI.

Concentric Cylinder Elements

Early in the program, fueled material was available only in the form of flat plates.

One of the primary reasons for considering the concentric cylinder element illustrated in

figure VII-24 was that this element could possibly be made from plate stock curved to

form cylinders of various diameters. The cylinder wall thickness would be about 20 mils,

and the annular gap between cylinders would be 1/2 the equivalent diameter or about

1/16 inch. Each cylinder would have a different uranium dioxide loading to achieve uni-

form radial power within the element. The number of cylinders could vary, and fewer

elements would be required in a given size core as the element diameter is increased.

As the fuel elements get larger, however, the self-shielding effects increase, and a

greater variation in fuel loading is required. The maximum number of cylinders that can

be used without exceeding a uranium dioxide loading of 30 volume percent is approximately

11 cylinders. This corresponds to a fuel-element diameter of 2 inches.

Fabrication of Concentric Cylinders

Several tungsten - uranium dioxide cylinders are shown in figure VII-25. These

cylinders were easily formed at 1700 ° F from tungsten - 20 volume percent uranium

dioxide plates. Cylinders from 1/2 inch up to several inches in diameter can be formed

by this method. However, the joining of these tungsten - uranium dioxide composites was

a very difficult problem because dispersed uranium dioxide melts about 1200 ° F lower

than the matrix. Thus, ordinary fusion welding techniques, such as electron-beam or

tungsten - inert-gas welding, could not be used without extensive gas bubbling and resul-

tant porosity in the weld zone. Therefore, several other joining techniques were inves-

tigated under contracted programs, and the results indicate that the two most promising
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techniques are gas-pressure bonding and tungsten - inert-gas brazing with an alloy of

tungsten - 25 percent osmium. The gas-pressure bonding method best met the specifica-

tions. This process uses a technique similar to that used in hot isostatic compaction. A

joint of the type that can be obtained with this method %s shown at the right of figure VII-25.

It should be noted in the photomicrograph that grain growth has occurred across the inter-

face and clad-to-clad bonding has been achieved. Tensile tests at 4500 ° F on joined

plates have shown that gas -pressure bonding and the brazing method both result in joints

that are as strong as the base metal. On the basis of these results, it is thought that

tungsten - uranium dioxide cylinders can be successfully fabricated and used to construct

a concentric cylinder fuel stage.

Dynamic Head Limitations of Concentric Cylinders

The aerodynamic forces a concentric cylinder fuel-element stage could withstand

were not known, but this limit was determined experimentally by noting the dynamic head

necessary to cause failure during test. High-temperature tests are difficult to conduct,

so tests were first conducted with a substitute material at room temperature. High-

temperature property data for tungsten at the time suggested that a lead-antimony alloy at

room temperature would simulate fairly well tungsten at high temperature.

Lead-antimony elements were placed in an air duct, and the flow rate was increased

until failure occurred. Three elements of the type tested are shown in figure VII-26.

The first fuel-element stage had two support combs at the leadingedge soldered to

each of the cylinders. The fuel-element stage failed at a dynamic head of 13 pounds per

square inch. Additional supports were added at the leading edge, as indicated in the other

two photographs. These lead-alloy fuel-element stages failed at dynamic heads of 26 and

30 pounds per square inch.

Tests on tungsten stages were also run at operating temperature. For these tests,

hot gas from an arc jet was used in place of room-temperature air. The hot tungsten re-

sults are compared with the lead-antimony test results in figure VII-27. Both the tungsten

and the lead-antimony results are for fuel elements with leading-edge supports at 90 ° in-

tervals, as shown in the figure. As previously mentioned, the dynamic head at failure for

lead-antimony elements was about 13 pounds per square inch, while the actual average

value was 12.6 pounds per square inch.

The highest dynamic head available from the arc jet rig used for hot tungsten was

12 pounds per square inch. A tungsten element of the type shown here did not fail at

4700 ° F and 12 pounds per square inch dynamic head. Failure was induced by increasing

the temperature, and the element failed during a transient from 4700 ° to 5100 ° F.

Lead-antimony, therefore, appears to simulate tungsten quite well, but the simulation
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is best at a temperature somewhat higher than the nominal design temperature.

One other effect noted during the lead-antimony tests was that elements tested for

long duration failed at lower dynamic heads than those under short-time tests. This in-

dicates that creep contributes to failure. No long-duration hot tungsten data have been

obtained to date.

The lead-antimony and tungsten fuel-element stages both failed in the same manner.

Figure VII-28 illustrates the type of failure. Failure of the element shown started at the

upstream end. As more leading edge supports were added, failure started at the down-

stream end. Thus, further supports must be added at the downstream end.

These data indicate that the concentric cylinder configuration may be suitable for the

reference design conditions, but this configuration imposes a severe dynamic head limit

unless many supports are added to the cylinders. Because of the many supports required,

it is desirable that these supports also be fueled so that they may contribute most effec-

tively to heat transfer. This obviously leads to a fine grid in which all the webs are

fueled. Such a configuration is represented by the honeycomb element of figure VII-29.

Honeycomb Elements

The honeycomb is a very rigid structure and may well satisfy the desire for thin

fueled sections discussed earlier without imposing dynamic head as a limiting parameter.

The web thickness is about 20 mils, and the distance across flats of each hexagonal flow

passage is about 1/8 inch. The outside diameter of the stage is about 2 inches.

Fabrication of HoneycombElements

Various fabrication methods were investigated under contracted programs in an at-

tempt to solve the very difficult problem of producing tungsten - uranium dioxide honey-

combs. The state of the art in fabrication has now advanced to the point at which it is

felt that fabrication of complex geometries is feasible.

Typical honeycombs fabricated with the three most promising methods investigated

are shown in figure VII-30. The isostatic compaction method is a combination of temper-

ature and pressure in an autoclave to achieve the compaction of tungsten-coated uranium

dioxide particles around expendable hexagonal mandrels. In the powder metallurgy pro-

cess, tungsten-coated uranium dioxide particles are blended with fine tungsten powder as

an aid to stntering. A binder and a plasticizer are added to the mixture, which is then

rolled in the green, unsintered condition into thin sheets. These shoets are corrugated

and glued together to form a honeycomb, and the entire structure is then denstfied by
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sintering. The pneumatic impaction technique is very similar to the isostatic compaction

method in that tungsten-coated uranium dioxide_particles are hot compacted around expen-

dable mandrels; in this process, however, compaction is achieved by closed die impac-

tion in a high energy rate forming machine.

All the honeycombs shown have several features in common:

(1) They were all consolidated from tungsten-coated uranium dioxide particles.

(2) They all have a density in excess of 98 percent of theoretical.

(3) The fuel loading of each honeycomb was varied from 30 volume percent in the cen-

ter to 10 volume percent at the periphery.

Nondestructive testing techniques for honeycombs were also developed under a con-

tracted program. Use of these techniques on honeycombs showed, in general, that rela-

tive close dimensional tolerances with regard to web thickness and flow channel size

could be achieved. These tests also showed that it is possible to fabricate honeycombs

that have a high degree of integrity and no cracks.

Isostatic compaction is thought to be the most reliable of the three fabrication meth-

ods. The method used in assembling this type of honeycomb is shown in figure VII-31.

The photo-etched molybdenum template is fitted to the plastic jig, and the hexagonal man-

drels are installed. The honeycomb is divided into zones of various fuel loadings by My-

lar sleeves placed around the mandrels, and a_sintered tungsten sleeve isplaced around

the assembly. The various fuel loading zones are filled with tungsten-coated uranium

dioxide particles of the desired fuel loading. During loading, the assembly is vibratory

compacted. The Mylar sleeves are then removed, and the top template is installed. The

assembly is ejected from the plastic jig and placed in a molybdenum can, which is subse-

quently evacuated and sealed. The entire assembly is then densified by tsostatic compac-

tion. The molybdenum canning material is subsequently removed with nitric acid.

All the honeycombs shown in figure VII-30 are the actual size required for the cur-

rent reactor design. Thus, no scaleup in size is required to produce actual reactor fuel

elements, but an increase in prodUCtion rates would be necessa_._orne additional de-

velopment of the fabrication processes is required before actual reactor fuel elements

could be produced. In particular, improvements are needed to control dimensions and

fuel distribution of these structures better. In addition, further development of cladding

techniques is needed to clad all the surfaces of the complex fuel-element structure. How-

ever, the feasibility of fabricating complex tungsten - uranium dioxide configurations has

been demonstrated.

Thermal Stress in HoneycombElements

The rigidity of the honeycomb essentially eliminates the dynamic head problem, but

this inherent stiffness could become a liability whereinternal stresses enter in.
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Although a design for uniform temperature is attempted, some temperature gradients

would be present. Also, dissimilar materials would cause thermal stresses, that is, ma-

terials with different thermal expansion coefficients, such as fueled and unfueled tungsten

or various amounts of fuel and tungsten in the honeycomb stage itself.

It was felt that the honeycomb could withstand thermal stresses at temperature with-

out difficulty. The combination of strength and ductility for tungsten was believed to be

adequate for any reasonable reactor situation. Plastic flow at high temperature would

essentially preclude high stresses.

The end result of such plastic flow or inelastic strains, however, was of concern.

The problem could occur as follows: Thermal stresses would cause inelastic strain at

temperature (1) by plastic flow as the stresses are applied and (2) by creep under these

stresses during reactor operation. Because these strains are inelastic, when the honey-

comb is cooled, low-temperature stresses would appear as the honeycomb would try to

return to its original unstrained condition.

At room temperature, tungsten is strong but brittle, and the internal stresses might

cause the honeycomb to crack. The situation is aggravated by thermal cycling where

thermal fatigue enters in. It was not known how the honeycomb would deform in this in-

elastic manner, so no estimates could be made of the low-temperature stresses.

In order to evaluate the thermal stress problem, stresses were imposed on a uni-

formly loaded honeycomb stage by temperature gradients, as shown in figure VII-32.

Hot gas from a tungsten preheater was forced to flow through the 19-hole central region

of the honeycomb, indicated by the hatched area. The outer region of the honeycomb was

coole_[ by the flow of cold gas through the hexagonal passages, shown by the dotted area.

The temperature gradient was controlled by the amount of cold gas flowing through the

outside region. This gradient was predominantly confined to a three-row nonflow zone

located between the hot and cold flow regions. The typical radial temperature profile

that results is shown in figure VII-32. This radial temperature profile imposes thermal

stress in the radial, tangential, and axial direction, as indicated.

Figure VII-33 shows a honeycomb fuel element as it would be tested. Thin members

hold the element in position to avoid external constraints. The fuel-element stage is held

against a manifold to guide the cooler gas into the passages around the outside element.

Hot gas enters through the center from below and is not shown. Thermal stresses were

introduced in this manner at high temperature. The fuel-element stage was thermally

cycled to determine whether low-temperature stresses and thermal fatigue would cause

the honeycomb to crack.

The test conditions were as follows: The maximum heated zone temperature was

purposely limited to 4000 ° F, because the honeycomb specimens with the best oxide addi-

tives were not yet available for testing. The maximum temperature gradient was 1200 ° F

per radial inch, and this occurred at the edge of the heated zone. This temperature gra-
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in excess of the iargest :gradient anticipated in the reactor. A totaldient is considerably ...... : : ......

of 25 thermal cycles was run With cooling rates around 20 ° F per second. Inadvertently,

during one of the 25 thermal cycles, a rapid shutdown occurred. This resulted in a cool-

ing rate in excess of 1000 ° F per second.

Inspection of the element before and after testing with an eddy current probe showed

that the honeycomb fuel-element stage had not been affected by the stresses imposed.

This test indicates that the honeycomb can withstand both the high-temperature stresses

imposed and the low-temperature stresses resulting from inelastic strain, and that ther-

mal fatigue does not set in for 25 cycles. :_ =:: "

Cylinder and Ligament Configuration

There are other fine geometry configurations that could be considered.: For exam-

ple, the element shown in figure VII-34 could, with some development , be fabricated by

the same process used for the honeycomb. It may have some advantages from a thermal

stress viewpoint and it conforms more readily to the cylindricalsupport tube without:

compromising the flow passages at the periphery of the element. Since the initial thermal

stress tests on the honeycomb have not as yet revealed a thermal stress problem, how-

ever, the configuration was not pursued.

FUEL-ELEMENT SUP PORT

The last area of concern ts fuel-element support. Figure VII-35 shows the arrange-

ment of the fuel-element components. The fuel-element assembly is housed inside the

_ aluminum pressure tube, as described in paper V, and it consists of a tungsten support.tube and a seriesof fuel-element stages. The support tube fits inside the aluminum tube

and runs the full length of the core. Its functions are to keep the hot hydrogen flow away

from the aluminum tube and to support the fuel-element stages. The proposed full-length

fuel element is made up of short stages arranged in series with each stage individually

........ attached to the support tube. This arrangement is intended to ease fabrication of the ele-

ment and also to provide mixing of the hydrogen between stages to minimize hot channels.

The support tube is fixed to the cold end of the reactor. Additional lateral support is

necessary along the length to center the fuel-element assembly inside the aluminum tube.

This will be discussed in more detail later.

Axial Support

Two types of attachments to fasten the fuel-element sta_es onto the support tube have
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been considered: mechanical joints and metallurgical bonds. As an example of mechani-

cal joints, tungsten pins could be used to connect the stage to the support tube but these

will not be discussed further. Instead, one method of attachment that uses metal bonding

is described herein. Metal bonding could include welding or brazing but, because of the

encouraging results obtained with vapor deposition, it was decided to try vapor depositing

the tungsten support tube directly onto the fuel-element stages.

Although no fuel element was developed during this program, some hardware was

built under contract. The vapor deposition attachment method is illustrated in figure

VII-36. A three-step procedure, which uses vapor deposition to form the tungsten sup-

port tube on one honeycomb fuel-element stage, is shown. More than one stage would, of

course, be used for the full-length fuel element, and the support tube would run the full

length of the core.

The three-step procedure starts with the honeycomb stage, which has an unfueled

tungsten ring as an integral part of the fuel-element stage. Sacrificial molybdenum is

then used to provide a mandrel for the vapor deposition of a tungsten tube as follows:

The element is converted to a uniform diameter mandrel by covering the exposed part of

the honeycomb with a thin-wall molybdenum cylinder. Molybdenum is added at both ends

to extend the support tube and to cover the ends. Actually, a series of honeycomb stages

would be used instead of the single stage shown in figure VII-36. The only exposed tung-

sten is the unfueled tungsten ring and, when the tube is plated onto the mandrel surface,

the attachment is achieved in this area. The tungsten tube is vapor deposited by the hy-

drogerf reduction of tungsten hexafluoride, and the outside diameter is machined to the de-

sired dimension at this stage of fabrication. All the molybdenum is then leached out in-

cluding the thin-wall molybdenum cylinder, which leaves the element, as shown at the top

of figure VII-36. The unfueled band used for attachment does not have to be continuous;

it could be slit or consist of portions of a band. Also, the axial position of the band is not

restricted to an end of the honeycomb stage.

Elements of this type were tested at temperature under axial loads. The maximum-

support tube temperature in the reference design is 3550 ° F, and it occurs at the last

stage in the reactor. This temperature was achieved experimentally by induction heating,

as shown in figure VII-37. The induction coil, the support tube, and the fuel-element

stage are evident in the figure. The maximum aerodynamic drag load also occurs on the

last stage of the fuel-element assembly. At the reference reactor design condition, the

dynamic head is 12.6 pounds per square inch, which corresponds to a drag force of

25 pounds. A 25-pound load was applied for 10 hours at 3550 ° F, consisting of five ther-

mal cycles of 2 hours each. The load was then increased 100 percent to 50 pounds, and

10 additional hours were run at 3550 ° F, consisting of five thermal cycles. Only minor

dimensional changes were noticed. These changes occurred only at the attachment. The

bond achieved by vapor deposition is therefore sufficient to support the stage for at least
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twice the load of the reference design conditions.

Lateral Support

Lateral support requires a means of centering the hot tungsten support tube inside the

cold aluminum tube without overheating the aluminum. The lateral support structure

must, in addition, be able to accommodate relative thermal expansio a between the alumt-

-- num and tungsten tubes.

This problem was solved by the use of a thin, corrugated , tungsten support spring

shown on figure VII-35. This structure can withstand the high temperature of the support

tube and yet provide only very small heat conduction. Heat-transfer calculations show

that the heat that is transferred is rapidly dissipated in the aluminum tube, and it raises

the aluminum tube temperature only about 30 ° locally at the point of contact.

The amount of differential expanston that the tungsten support spring must accommo- _

u

date depends on the axial position, because the tungsten support tube temperature follows

• close to the propellant temperature. The propellant temperature increases as it passes

through the reactor. The aluminum tube temperature, in contrast, is essentially inde-

pendent of axial position. At the midcore position, the differential expansion is approxi-

mately 5 mils compared with an annular gap of 125 mils.

The ability to accommodate relative thermal expansion was determined by a test illus-

trated in figure VII-38. The tungsten support spring was placed between an outer tungsten

cylinder and a tantalum inner cylinder. The difference in thermal expansion between tung-

sten and tantalum provides a differential expansion when the entire assembly is heated to

a uniform temperature in a furnace. The relative expansion of tantalum and tungsten

' closely simulates the reactor conditions.

A 5-rail-thick corrugated tungsten support spring with 12 lobe's resulted in a 1-milpermanent set at 4000 ° F; that is, there was a l-rail clearance after cooling to room tem-

perature. No other deformations were noticed. At temperatures lower than 4000 ° F, no

? clearance was apparent. The corrugated tungsten support spring, therefore, appears to

_offer a satisfactory means of maintaining concentricity.
L -

t- - Tungsten ts known to be very brittle at room temperature. Therefore tests were con-

, ducted to determine whether or not this brittleness would present a problem during lateral
-

•. wbrahon. The thin corrugated spring was chosen for this purpose because, in addition to
[

providing a small heat conduction path between the tungsten support tube and the aluminum

-: pressure tube, the thin cross section allows appreciable deflection without introducing

_- large stresses. This deflection introduces friction to damp out any induced vibration.

Tests were first conducted to determine the spring characteristics. These tests,

which used a tantalum ring as the mass in a spring mass system, indicatedthatthe corru-

t_
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gated spring has a dynamic spring constant that is 50 to 75 times the static spring con-

stant. Also, it possesses damping as high as 50 percent of critical damping.

Such a spring was utilized in' a vibration test of a full-length support tube. Strain

gages were located at various axial positions. The tube with simulated fuel-element

masses was mounted on a shake table, and tests were run first with no lateral support

springs, then with one, two, and finally three springs. Tube bending stresses resulting

from lg lateral forced vibration are shown in figure VII-39. Data obtained with two and

three springs are not presented.

The maximum stress with no springs was approximately 27 000 pounds per square

inch at the resonant frequency of 41 cps. With one spring between the aluminum pressure

tube and tungsten support tube, the maximum stress was reduced to about 8000 pounds

per square inch at the resonant frequency of 53 cps. When water was added on the out-

side of the aluminum tube, the resonant frequency decreased to 39 cps because some of

the water moving with the tube had increased the effective mass of the system. The max-

imum stress remained about the same.

The high dynamic spring constant of the corrugated tungsten support spring in effect

provides one additional point of support to reduce the maximum stress from 27 000 to

8000 pounds per square inch.

SUMMARY

Results indicate that tungsten - uranium dioxide composites are quite capable of op-

erating under constant heating conditions at 4500 ° F for 10 hours or more with less than

1-percent fuel loss if the exposed surfaces are clad with a thin layer of unfueled tungsten.

The use of tungsten-coated uranium dioxide particles to form the composite is also help-

ful in reducing fuel losses. Thermal cycling conditions, however, aggravate the fuel re-

tention problem by causing partial decomposition of the fuel. This problem appears to be

controllable by the use of uranium dioxide stabilized with other metal oxides, particularly

cerium or yttrium oxides, but more extensive testing of composites with stabilized fuel

is necessary to completely define the operating potential of tungsten - uranium dioxide

composites.

The property measurements that have been made indicate that tungsten - uranium

dioxide composites have sufficient high-temperature strength and ductility to be used as

self-supporting components in nuclear rocket fuel elements if the fuel loadings are kept

relatively low (i. e., less than about 35 volume percent uranium dioxide).

In addition to accomplishing the aforementioned goals, the difficult problems involving

fabrication of tungsten - uranium dioxide into suitable fuel-element structures have been

largely solved. Fabrication techniques have advanced from the preparation of flat plates
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to the consolidation of complex configurations such as honeYCombs. Furthermore, meth-

ods have been developed for radially varying the fuel loa_ing from 30 volume percent at

the center to 10 volume percent at the periphery. It is now felt that fabrication, joining,

and nondestructive testing of complex tungsten - uranium dioxide configurations are fea-

sible. Further development and optimization of the various processes are needed, how-

ever, before actual fuel elements can be produced.

Fuel-element performance tests have shown that the concentric cylinder element can

operate at the reference design conditions, but this element imposes severe performance

limitations unless many supports are incorporated. High performance requires a fine

grid, such as the honeycomb element. Although the thermal stress problem for these

elements has not been completely resolved, th_eflne grid element appears to offer the

best approach to operation at high power density. Methods of support_g these elements

against axial and lateral loads are available. .........

The interrelation of operating parameters is shown in figure VII-23 with a reference

design point indicated by the symbol at a mass velocity of 50 pounds per second per

square foot and an average dynamic head of 10 pounds per square inch corresponding to a

maximum value of 12.5 pounds per square inch mentioned earlier. Without a dynamic

head limit, the mass velocity could be increased. It is felt that a fine grid fuel element

such as the honeycomb would not present the limit on mass velocity, but rather some

other factor such as core pressure drop would enter in. The thrust, therefore, could be

increased accordingly.
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Eigure VI[-1.- Fabrication of tungsten - uranium dioxidecompositesby powder
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Figure Vii-2. - Tungsten - uranium dioxide platesof various fuel loading. (Sedions are parallel

to rolling direction.) CS-29782
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(a) Cylinders formed from tungsten - (b) Joint obtainedby gaspressure bonding.
uranium dioxideplates.

FigureVII-25. - Formingand joining of tungsten - uranium dioxideplates.
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Figure VII-26. - Cold flowtestson leadantimony.
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FigureVII-27.- Tungstenand lead-antimonycomparison.
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Figure VII-28. - Testson lead-antimony cylinders; upstream views.
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FigureVII-29.- Honeycombconfiguratlon.

(a) Hot isostaticcompac- (b) Powdermetallurgy (c) Hot pneumatic im-
tion. formingand sinterlng, paction.
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Figure VII-30. - Tungsten - uranium dioxide honeycombstructures fabricated
bydifferent processes.
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Figure VII-33. - Thermal stress experiment.
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Figure VII-]4. - Cylinder and ligament configuration.
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Figure VTI-Y. - Integral fuel element - support tube fabrication.
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Figure VTI-37. - Axial support test.
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Figure VII-38. - Lateral support spring.
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: INTRODUCTION

The tungsten water-moderated reactor (TWMR) is actually composed of t@o major

fluid systems, the hydrogen, or propulsion, loop and the water, or moderator, Ioop.

These two flow systems, their components, characteristics, and interrelations are dis-

cussed herein.

"_ The closed-loop flow path of the water (fig. VIII-1) is quite simple. The water leaves

_the pump, enters the reactor vessel, and passes through the core and the beryllium side

reflector where it absorbs heat. The water then flows through the shell side of the heat

exchanger where it gives up this energy and then back to the circulating pump to complete

the cycle.

In this short 2- to 3-second trip around the loop, the water performs several func-

tions and creates_veral problem areas. In the passage through the reactor, the water

not only performs its main function as a nuclear moderator, but also acts as a structural

_coolant. This latter function is the principal reason why the temperature of the aluminum

_can be maintained_ at les s than 300 ° F in such close proximity to the extremely hot fuel

lements. The water flow rate and temperature must therefore be capable of adequately
_Cooling the aluminum structure.

As the water flows through the heat exchanger, the energy absorbed by the water in

flowing through the core region is transferred to the incoming hydrogen gas. The hydro-

gen enters the heat exchanger at -290 ° F, considerably below the freezing point of water.

Unless the heat exchanger is properly designed, the water passing through it could freeze,

which would stop the circulation of the water, result in a loss of coolant to the aluminum

structure, and eventually lead to failure of the reactor.

_ The key to the design of the water system, therefore, is the balance between freezing

in the heat exchanger on one hand and maintaining a low enough water temperature to

assure cooling of the aluminum on the other.

Precedingpageblank
This side of page UNCLASSIFIED
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The hydrogen, or propulsion, flow system is somewhat more complicated than the

water loop. Two areas of concern in the propulsion loop, the design of the turbopumps

that force the propellant through the system and the proper cooling of the nozzle, are dis-

cussed in some detail in papers II and III.

The flow path of the hydrogen in the TWMR concept is from the storage tank through

the following components: the first and second stage pumps, the cooling tubes in the re-

generatively cooled nozzle, the heat exchanger where the problem of freezing the water

is again encountered, and then through the topping turbine. From there it enters the

reactor core where most of the gas is heated to 4000 ° F and expanded through the propul-

sion nozzle.

About 2_ percent of the hydrogen passes through four special fuel elements where the

gas is heated to only 1400 ° F. This bleed gas drives the control solution turbopump, the

moderator turbopump, and a hydrogen turbopump and is then discharged through an aux-

iliary nozzle.

In flowing through the core region, maximum heat transfer to the hydrogen is desir-

able within the limits of the fuel element operating temperature. Flow through parallel

passages and variations from nominal conditions that create hot spots must be taken into
account.

In addition to the independent behavior of the water and hydrogen flow loops, many

components in the two systems are interrelated; for example, the hydrogen in the bleed

system drives the water turbopump, and the water temperature affects core reactivity.

The overall system then must also be examined to determine the character of these inter-

relations with regard to steady-state operation, startup, and control possibilities.

PROP ELLANTFEEDSYSTEM

The propellant pumping arrangement, the so-called feed system, must supply the

pressure necessary to force the hydrogen through the fuel elements, propulsion nozzle,

and other components in the system. The power for this can come either from the reactor

or from a separate source. In the TWMR, only methods that used reactor power were

studied.

One system studied was a topping system as shown in figure VIII-2. Hydrogen flows

from the storage tank through the pump, the nozzle wall, the heat exchanger, a turbine

that drives the pump, the reactor core, and out the propulsion nozzle. The topping sys-

tem is simple and efficient because all the hydrogen passes through the nozzle to produce

thrust. In this concept the topping turbine must be located downstream of the heat ex-

changer because it uses the energy picked up in cooling the nozzle walls and the water

moderator to drive the pump. Although the energy in each pound of gas entering the
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turbine is still low at -160 ° F, the turbine is calhable of developing thousands of horse-

power because of the large mass flow passing through it. In the topping system the tur-

bine pressure drop must be added to the pump head. If there is enough energy available

to drive the turbine, this simple feed System can be used.

Another classic method for pumping the propellant is the bleed system (fig. VIII-3),

which is similar to the topping system except for the source of gas that drives the turbine.

A small amount of hydrogen is bled from the main flow and heated in special fuel elements

to about 1400 ° F. The bleed gas flows through the turbine that drives the hydrogen pump

and is then dischargeci through an auxiliary nozzle. Since the gas iSdischarged at low

temperature, its specific impulse is low, and the overall system specific impulse is re-

duced.

A comparison of the two systems is shown in table VIII-1 based on the same power-

plant conditions of chamber pressure, temperatures, flow rate, PUm_Pefficiency, etc.,

that were used in the reference design. The bleed system has no upper chamber pressure

limit. The topping system limit occurred around 700 pounds per square inch absOlute for

the engine considered. This is the point above which there i s insufficient energy picke d _
up in the nozzle and heat exchanger to provide the required pumping power" The bleed

rate was 5.1 percent of the total l_ydrogen flow for the bleed system: The topping-system

has no bleed gas. The engine specific impulse values were calculated for a 40:1 area

ratio propulsion nozzle discharging to vacuum with a nozzle efficiency of 98 percent. The

bleed system specific impulse was 819 seconds, and that of the topping system was

839 seconds. The hydrogen pump discharge pressure was 945 pounds per square inch for

the bleed system and 1490 pounds per square inch for the topping system. Higher pres-

sures require heavier structures between the pump and turbine. In this concept, the noz-

zle would be the principal part affected. The bleed system requires 7200 hp and the top-

ping system, 11 700 hp to drive the hydrogen pump. It should be pointed out that each

system will also require about 1000 hp to drive the moderator and poison solution circu-

lating pumps.

For cases in which a topping system cannot supply all the required pumping power, a

combination of the two systems can be used to minimize the loss in thrust due to the bleed

gas. This is done at the expense of some complexity, as shown in figure VIII-4. This

combination is called a split feed system because the pump work is split between the top-

ping turbine and the bleed turbine. As much work as possible is extracted from the top-

ping turbine, which drives the second stage pump. The rest of the work is furnished by

the bleed turbine, which drives the first stage pump.

The split feed system was used in the reference design in order to study its complex-

ities and behavior. In view of the study-tool aspects of the design, the nozzle chamber

pressure was chosen low enough to permit investigation of any combination of systems

from all-bleed to all-topping systems. Since the 600 pound per square inch chamber
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pressure selected would permit the use of an all-topping system, an arbitrary work split

between the bleed and topping turbines was used. The resulting performance characteris-

tics are a compromise between those of the all-bleed and all-topping systems given in

table VIII-1. The split system gets around the chamber pressure limitation of the topping

system and the high bleed rate of the bleed system.

There are, of course, the usual requirements of rotational speed, suction head, etc.,

for the turbomachinery used in this system. The design point operation of the turbopumps

for the reference design is well within the present state of the art in these areas. These

are grouped under the first item in the following list of general turbopump requirements:

(1) Rated conditions

(2) Nuclear environment

(3) Space environment

(4) Small size and light weight

(5) Long shutdown period between runs

(6) 10-Hour design life at rated conditions

(7) 25 Start-stop capability

The nuclear environment will dictate such items as materials of construction and method

of fabrication. Items 3 and 4 are rather obvious requirements. The long shutdown period

between runs will require low leakage shaft seals. The last two requirements of design

life and restart capability should not present any difficulty.

These requirements for the system turbopumps are generally the same as those for

the pumps of any nuclear rocket.

HEATTRANSFERTOTHE PROPELLANT

The heart of the system performance is the heat transfer in the reactor core. The

performance objectives of a nuclear rocket are high specific impulse and small size.

These depend, in turn, on high outlet gas temperature and efficient heat transfer from the

fuel. Since gas temperature is primarily limited by fuel temperature, a high value of

fuel temperature is desirable. Heat-transfer effectiveness depends on high temperature

differences between the fuel element and the coolant. Therefore, the maximum specific

impulse and smallest core would result if the maximum allowable operating temperature

on the entire fuel element surface could be maintained.

Several factors influence the power capability of the reactor. The most important
factors are as follows:

(1) Flow passage behavior

(2) Radial power distribution
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(3) Axial power distribution

(4) Hot channel factors

First, all the flow passages in the reactor do not behave in exactly the same manner.

Some tend to run hotter or cooler than the average. This makes it virtually impossible

to attain a constant temperature everywhere. Figure VIII-5 shows a cross section of a

typical fuel cell for the TWMR with the high-temperature fuel area, insulating gas gap,

aluminum pressure tube, flow divider, and water regions. The function of this flow di-

vider will be described later.

With the fuel operating at about 4500 ° F and with the aluminum restricted to about

300 ° F, a severe thermal gradient exists between the periphery of the high-temperature

area and the aluminum. While most of the temperature drop is across the insulating gas

gap, a gradient still exists in the outer fuel material. The flow passages in this peri-

pheral region, therefore, do not behave exactly like a flow passage in the center of the

fuel cell where no thermal gradient exists.

In order to minimize this problem, the fuel element is divided axially into 26 stages

with an axial gap between each stage. This provides an opportunity for the flow among

the passages to be mixed and to behave more uniformly since the pressure is balanced

over each stage instead of over the entire length.

The analysis of this geometry is quite complicated. Two digital computer programs

were used to predict behavior. Their use enabled the analysis of a variety of fuel ele-

ment configurations that took into account variable radial and circumferential power dis-

tributions and variable conductivity.

The results of these calculations indicate that because of the finite geometry of the

fuel cell, it is impossible to extract maximum power out of each and every passage. A

uniform fuel element temperature may be approached but cannot be attained.

RADIALPOWERDISTRIBUTION

The radial power distribution across the reactor tends to produce nonuniform be-

havior between fuel elements; however, this irregular behavior can be compensated for

by controlling the flow of propellant to each element.

Figure VIH-6 shows the gross radial power distribution of the TWMR. If the gas

flow across the reactor were constant, obviously the gas temperature in the outer ele-

ments would not be as high as the temperature of the gas emerging from the center ele-

ments; however, by orificing the flow, the flow in each of the elements can be matched to

obtain the same power-to-flow ratio. From the viewpoint of obtaining the same gas tem-

perature from each element and operating the fuel material at its maximum temperature,

this matching solves the problem of a radial power gradient.

!
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The fact that there is a nonuniform radial power distribution does imply, however,

an inefficiency of operation. The fuel elements near the outer edge of the reactor only

produce 70 percent as much power as the center elements. For a given power level then,

the reactor core is larger than would be required if the radial power distribution were

uniform.

AXIAL-POWER DISTRIBUTION

In the axial direction, the effect of a nonuniform power distribution is more complex.

If the power were uniform along the length of the core, for example, the temperature dif-

ference between the fuel element and the gas would nearly be constant. Under these cir-

cumstances, the maximum fuel temperature would occur only at the exit of the reactor,

the point where the gas temperature is highest. This obviously would not result in good

heat-transfer performance.

In nuclear reactors, the axial power naturally tends to be distributed according to

some cosine function. Figure VIII-7 shows the fuel element and gas temperature varia-

tion associated with a cosine power distribution.

As in the case of uniform power, the maximum surface temperature occurs at one

location only, and it would require a reactor length of about 37 inches to achieve a gas

temperature of 4000 ° F. To obtain the more desirable condition of a uniform surface

temperature along the entire length of the reactor, the shape of the power distribution

must be altered. This alteration can be accomplished by tailoring the neutron power by

zoning the fuel and absorber material and by using end reflectors (paper VI).

The problem is to determine what power distribution results in a uniform fuel ele-

ment temperature and to tailor the neutronics as close to this distribution as possible.

One important factor that influences the optimization of the power distribution is the

convective heat-transfer characteristics of hydrogen under the conditions found in a nu-

clear rocket reactor. Much experimental work has been done on gaseous heat transfer;

however, with a nuclear rocket reactor a new problem has arisen because of the ex-

tremely high metal temperature and extremely low gas temperature that exist in the inlet

region of the reactor.

For this sort of condition, the local heat-transfer coefficients are not accurately pre-

dicted by conventional heat-transfer correlations. Figure VIII-8 shows results of some

experimental heat-transfer work performed at Lewis in which the hydrogen properties

were evaluated at film conditions. The 20 to 30 percent uncertainty in convective heat

transfer for conditions similar to those in the inlet region requires an extremely conser-

vative approach to axial power optimization.

The experimental data were, therefore, reexamined to determine which parameters
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were producingthis scatter. From this investigation, a newcorrelation wasevolved,
which is shownin figure VIII-9. Obviouslya considerablereduction in scatter was
achievedwith this correlation.

Bulk gasproperties are usedin this modified correlation andcorrection factors for
surface-to-gas temperature ratio and for length- to-diameter ratio are included to obtain

local heat-transfer coefficients.

When this modified correlation was used, an axial power distribution was established

that would result in a constant surface temperature of 4500 ° F along the entire length of

the fuel element. This power distribution is shown in figure VIII-10; the maximum allow-

able heat flux is approximately 10 Btu per second per square inch.

Note that the allowable power is not highest at the inlet as might be expected, but

reaches a maximum a short distance from the inlet. This is due to the combined effect

of an increasing heat-transfer coefficient and a decreasing temperature difference, the

product of which determines allowable heat flux.

Figure VIII-11 shows the gas temperature variation along the reactor length for this

power distribution. With a uniform surface temperature of 4500 ° F, the required length

of the reactor to achieve an exit gas temperature of 4000 ° F would be about 25 inches, or

a 33-percent decrease in length over the cosine distribution. Figure VIII-12 compares

this desired distribution to the reference distribution, which was actually obtained by

zoning the fuel and the absorber. The deviation shown between the two curves would re-

quire an increase in core length of 2_ inches.

A better match to the desired power shape could probably have been obtained. The

reference power distribution shown was calculated by using an inlet end reflector and only

one region in which a mixture of natural and separated tungsten was substituted for the

all-separated tungsten. Further complications to improve performance of this type of

powerplant were not considered necessary. Furthermore, the desired curve, as ideally

calculated, would have to be modified to account for uncertainties in the calculations.

CALCULATIONAL UNCERTAINTIES

One example of these uncertainties has already been seen in the scatter of data about

the empirical heat-transfer correlation equation. Other unavoidable deviations from

nominal design conditions exist and must be considered in evaluating the power capability
of the reactor.

A few such uncertainties, in addition to the convective heat-transfer coefficient, are
as follows:

(1) Spatial distribution of power in both the axial and radial directions

(2) Fuel loading
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(3)Flow passage dimensions attributed to manufacturing tolerances

(4) Flow distribution

(5) Temperature sensing and reactor power adjustment

These uncertainties affect our ability to predict the maximum fuel element tempera-

ture during reactor operation. The concept of a "hot channel" or "hot spot" factor was

used to account for these effects.

The hot-spot factor is a multiplier that must be applied to determine the possible

effect of an uncertainty on the fuel temperature. It is essentially the ratio of the fuel ele-

ment temperature including the uncertainty to the nominal fuel element temperature.

In the TWMR, the cumulative effect of all uncertainties is based upon a statistical

combination of the increase in fuel temperature resulting from each uncertainty. This

combined hot-channel factor establishes a probability for the occurrence of any given fuel

element overtemperature. In this study an allowable overtemperature of 500 ° F was

assumed. Once this maximum tolerable temperature has been established, the likelihood

of reaching it can be determined as shown in figures VHI-13 and 14.

The design core length was established at 39 inches to allow for all the calculational

uncertainties. At this length, the probability of exceeding the allowable overtemperature

limit is 4x10 -5. Expressing this in another way, 1 fuel stage out of 25 000 will exceed

the allowable hot-spot temperature of 5000 ° F. Since there are 26 stages per fuel ele-

ment and 121 elements per reactor, this translates into 1 stage in 8 reactor cores ex-

periencing excessive temperature.

As shown in figure VIII-13, the degree of risk can be increased or decreased by

changing the core length. For example, a tenfold decrease in probability (1 stage in

80 cores) can be achieved by increasing the core length by about 3 inches.

Core outlet gas temperature can also be used to vary the probability of excessive

overtemperature as shown in figure VIII-14. If the reference exit gas temperature is re-

duced by about 80 ° F, the same probability, 1 stage in 80 cores, can be obtained.

These two examples illustrate the sacrifice in performance resulting from uncer-

tainties in one case in the form of increased core length and in the other in the form of

decreased specific impulse.

WATER-MODERATORSYSTEM

Except for the effect on the peripheral flow passages already discussed, the fuel ele-

ment performance can be analyzed independent of the water system because only a small

part of the total heat produced by the fuel element is transferred directly to the water.

The problems associated with the water flow system have other effects on design and oper-

ation.
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As already noted, the areas of concern in the water system are freezing in the heat

exchanger and proper cooling of the aluminum, In the TWMR concept, an aluminum sur-

face temperature of 275 ° F was used as a design point with 300 ° F as the allowable max-

imum. The operating water temperature, therefore, had to be greater than 32 ° F to pre-

vent freezing, and less than 275 ° F to cool the aluminum.

Obviously a satisfactory design could be achieved if an unlimited water flow rate was

used, but this would require excessive pumping power and much larger pumping equip-

ment. Therefore, it becomes necessary to establish a reasonable combination of temper-

ature and flow rate, which will provide adequate cooling of the aluminum and yet prevent

__ freezing in the heat exchanger.

In order to determine this combination, the amount of heat transferred to the water

in the core had to be known. There are several sources of this heat:

(1) Heat generated directly in the water by neutron and gamma radiation

(2) Heat generated in the aluminum by gamma and beta radiation and then transferred

to the water

(3) Heat transferred from the hot fuel assembly by conduction and radiation through

the aluminum pressure tube and intothe water .......

(4) Heat generated in other components and transferred to the water; these compo-

nents include the beryllium top and side reflectors, the water pump, and the

heat exchanger

This total heat is not uniformly generated in the core. The radial distribution is

shown in figure VIII-15. The ratio of the average heat load to the heat load at the center

of the reactor is 74 percent.

To compensate for radial power distribution in the core, the gas flow was orificed to

match the power distributio n. Orificing the water flow in the same manner reduced the : :

_water flow requirement 26percent. _

Other ways exist in which the water cooling efficiency can be improved. One way

this is accomplished is sh0wn in figure _-16. This schemati¢.sh0ws the region sur-

V- :-_ rounding a fuel assembly and the location of the inlet end reflector and pressure tube. A

desirable water flow distribution is one in which a high-velocity stream exists adjacent

to the pressure tubes and a slower moving region exists elsewhere in the core. The high-

velocity stream provides good heat-transfer characteristics for the pressure tube, where-

as the lower velocity stream, in noncritical regions of the core, reduces the pumping re-

quirements. To achieve this flow pattern, an aluminum baffle tube was located concen-

_trically about the pressure tube. Flow restrictions were located in the region between

_-- the concentric tubes and in the regions outside the baffles. The water is thus divided

into two flow regions: a high velocity region of 12 feet per second inside the flow divider,

or baffle, and a slower moving stream of 5 feet per second outside the divider.

Figure VIII-17 shows the water flow rate and temperature level requirements for
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cooling the aluminum structure. The curves are based upon using flow dividers and being

able to obtain the desired radial flow distribution; that is, the distribution that matches

the heat load.

From the figure, it is obvious that if the flow were increased beyond 1150 pounds per

second only a nominal increase in the allowable operating temperature would result. At

the same time, flow rates below 750 pounds per second approach a very sensitive part of

the curve where a small change in flow rate requires a large decrease in water tempera-

ture to maintain design aluminum temperature.

Also, at the lower flow rate and water temperatures, the water in the heat exchanger

would be more subject to freezing. For best operation, therefore, the water flow rate

should be somewhere between 750 and 1150 pounds per second depending on the operating

temperature chosen.

Because of the complex nature of the flow paths within the reactor, the calculation

of pressure losses and the orifice requirements necessary to obtain the proper flow dis-

tribution is quite uncertain, To check these uncertainties, a full-scale water flow test

was performed to study the characteristics of the system (fig. VIII-18). In the flow test,

provisions were made for readily changing the orifices at the entrance to the annular pas-

sages formed by the pressure tubes and the flow dividers (fig. VIII-16). The number of

holes in the exit support plate could also be varied to control the flow in the low-velocity

region.

After making a run with no orificing, orifices were installed based upon the estimated

pressure losses and desired flow distribution of the system. Subsequent orifice changes

were made on a trial-and-error basis by using the results of previous tests. The objec-

tive of each of these changes was to alter the flow in various regions of the core in an at-

tempt to obtain the correct flow distribution. The total water flow rate for each test was

changed to maintain at least the minimum required flow at every point in the core.

Figure vm-19, which is a plot of flow as a function of reactor radius, shows the re-

sults of the first and last of these tests along with the desired distribution. Although the

radial flow pattern is markedly improved between the first test with no orfficing and the

final test, it falls short of the desired distribution.

The area above the desired distribution represents overcooling of the structure due

to an excess of flow in those regions. The first test, with no orificing, required more

than twice the water flow rate desired. The final test required only 11 percent more flow

than that of the desired distribution. This latter flow rate was used in the reference de-

sign. These tests indicate that in a complex flow system at least 10 to 15 percent excess

flow must be allowed for to take into account maldistribution and calculational uncertain-

ties.
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WATER-HYDROGENHEATEXCHANGER

In flowing through the reactor, the water temperature rises about 50° F. After the

water leaves the reactor, it flows through the heat exchanger, which serves as a cooler

for the water and as a preheater for the incoming hydrogen gas. By properly sizing the

heat exchanger, the water temperature is dropped 50 ° F and returns to the reactor.

Efficiency is not an important factor in the design of this heat exchanger: For ex-

ample, the use of parallel flow, rather than counterflow, is less efficient. It increases

the length of the heat exchanger_by several inches; but more important, it provides an

additional 30° to 400F margin from freezing.

Figure VIII-20.shows the characteristic behavior of the TWMR heat exchanger. Cal-

culated values of the overall heat-transfer coefficient as a function of the flow ratio of

hydrogen-to-water at several water flow rates are given. As the hydrogen flow is in-

creased at a constant water flow, the value of the coefficient moves along one of the lines

shown toward the ice region; conversely, as the hydrogen flow is decreased at a constant

water flow, the coefficient moves away from the ice region.

An icing condition is defined as one in which any local temperature of the heat-

exchanger tubes drops below the freezing point of water. To the Ieft of the line marked

"ice", no such condition can occur. To the right of this line ice should begin to form.

A schematic representation of an equilibrium ice layer is shown in figure VIII-21.

Ice usually begins to form at the exit of the heat exchanger, the point where the water

temperature is lowest. As the ice thickness at this point increases, ice formation pro-..... _

gresses along the tube until an equilibrium condition is reached. When the ice on two

adjacent tubes reaches a thickness that is equal to one-half the tube clearance, complete

blockage of the water flow passage is assumed. Once ice is predicted, the analysis takes

into account its effect_0n heat transfer. The insulating effect of the ice causes the overall

heat-transfer coefficient to remain virtually constant after the icing is reached despite the

increase in film coefficient resulting from locally increased water velocity. Note that the

design point for the TWMR is considerably to the left of the ice line. There is a 65 ° F

margin from freezing at this point.

A portion of the reference design heat exchanger was tested at the Lewis Research

Center to determine how well the heat-transfer characteristics could be predicted analy-
J

tically. Figure VIII-22 shows some typical results of that test wherein the measured

against the predicted overall heat-transfer coefficients have been plotted. Perfect agree-

ment would fall on the solid curve. The open circles indicate no ice, while the solid cir-

cles indicate points where icing was predicted analytically. A +10-percent error band is

also shown.

No provision was made in the test to measure or even observe ice formation directly.

The water pressure drop across the heat exchanger was measured. Increases in the oh-
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served pressure drop would indicate the presence of ice; however, even this method of

noting ice formation was not too successful, since the increase in pressure drop for pre-

dicted values of small ice thickness was too insignificant to detect. The predicted ice

formation on the heat-exchanger tubes had to be quite thick before an appreciable increase

in pressure drop could be detected.

The agreement between predicted and measured values of heat-transfer coefficient is

excellent when no ice is predicted. When ice formation is predicted analytically, the mea-

sured values tend to be higher than the predicted value. Because of this additional un-

certainty, the criterion established for the TWMR was that no icing was permitted under

steady-state operation. This criterion was not extended to transient conditions since

some icing was assumed to occur under what was considered the likely startup sequence

(fig. VIII-23):

(1) With the water circulating at some low flow and with no hydrogen flow, the reactor

is brought to a low power level.

(2) The water temperature is increased to near the operating point by radiant ex-

change between the fuel elements and pressure tube.

(3) At time zero, as shown in the figure, the flow of hydrogen is initiated.

As the cold hydrogen passes through the heat exchanger, it cools the water. Because

of the negative water temperature coefficient, the reactor goes on a period driving up the

power. During this time the hydrogen and water flow are increasing. As reactor power

increases, more energy is deposited in the system: and the water temperature begins to

increase. As design operating conditions are reached, the increased water temperature

terminates the power increase.

The spectrum of conditions existing in the heat exchanger during this transient is

quite large. Figure VIII-24 shows the heat-transfer characteristics during a typical

startup, a 30-second startup with assumed defining temperatures as shown. The solid

line is the overall heat-transfer coefficient of the heat exchanger, while the broken line

defines the start of icing under the flow conditions which exist during the transient. Any

time the actual heat-transfer coefficient falls above the icing line, ice formation is pos-

sible. The shaded area therefore represents the time during which icing of the heat ex-

changer can occur during this particular transient.

The problem of ice formation under transient conditions has been investigated at

Lewis. The investigations have established the time required to form ice as a function of

the heat-transfer characteristics of the system and the steady-state ice thickness which

would result under the same conditions.

In the TWMR, the time required to form ice is of the order of 1 second, largely be-

cause of the use of small, thin-walled aluminum tubes in the heat exchanger.

Since the time constant for transient ice formation is short compared with the time

in which icing conditions exist in this particular startup, a reasonable estimate of the ice
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thicknesscanbemadeby using apointwisesteady-state analysis of the conditions existing

during the transient. Such an analysis should also be conservative since the actual ice

thickness lags the predicted ice thickness by this 1-second delay.

Figure VIII-25 shows the result of such a study. The maximum ice thickness pre-

dicted during this particular transient was 0.014 inch, much less than the 0.050 inch re-

quired to cause complete blockage of the water flow. No problems should result by per-

mitring transient ice conditions of this magnitude.

Transient experiments on the 19-tube heat exchanger have been performed to verify

the assumption that the heat exchanger can pass through an icing condition without damage

during a startup similar to the one just described. No problems were encountered with

ice blockage under conditions for which the predicted ice thickness was as high as 0.013

inch ...... _ . ........ _--_ ...................

Another problem that must _ faced in the heat exchanger is the sensitivity to changes

in operating con ditio__ns. For example, suppose that the heating rates in the water and

aluminum were somewhat differentfrom those used to calculate the gamma heating in the

core. The heat absorbed by the water in flowing through the reactor would therefore be

different from that used to size the heat exchanger. Figure VTII-26 shows how the heat

exchanger would behave under these conditions.

If the heat absorbed by the water in flowing through the reactor differs from the de-

sign value, the temperatures will adjust to compensate for this deviation and reach a new

equilibrium condition. If more heat were absorbed, the water temperature would increase

and tend to exceed the temperature necessary to keep the aluminum tubes below their

300 ° F limit. On the other hand, if the heat absorbed by the water were lower than the

design value, freezing of the water in the heat exchanger would eventually result.

Once the heat exchanger is sized, the operating range is limited to this band, which

in this case permits a variation in heat load of only 6 percent greater and 16 percent less

than the value fqr which the heat exchanger was originally sized. From the standpoint of

heat-exchanger sensitivity, being able to control the characteristics of the heat exchanger

during operation would be desirable.

SYSTEMCONTROLSTUDIES

A very effective means of controlling the heat-transfer characteristic of the heat ex-

changer is to install a hydrogen bypass around the heat exchanger. One of the previous

figures (fig. VIII-20) showed the performance of the TWlVIR heat exchanger. As hydrogen

_ flow was decreased the operating characteristics moved away from the icing region.

_: Controlling the flow of cold hydrogen through the heat exchanger, can change its charac-

teristic behavior.

r
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Theuseof a bypasscouldtherefore beusedquite effectively to reduce the sensitivity

of the heat exchanger to any deviation from nominal design conditions such as variation in

the quantity of heat absorbed by the water.

The flexibility of the system is also improved considerably by a heat-exchanger by-

pass. Figure VIII-27 shows the steady-state operating envelope for the TWMR. Here,

the reactor power is given as a function of total hydrogen flow rate with the design point

shown at 100 percent power and flow. The system can operate at steady state anywhere

within the shaded envelope.

This envelope was obtained by using analog and digital simulation of the entire sys-

tem; the boundaries are physical limits that exist in various parts of the system.

The upper limits that define this envelope are the maximum pump speed limit on the

first stage pump, the fuel element temperature limit, and below about 70 percent power

and flow, the bleed gas temperature limit. This limit is reached when the temperature of

the bleed gas exceeds the maximum assumed turbine materials limit. At a low flow rate,

there is the pump stall limit. Below this limit, operation of the pumps is undesirable.

Since there are two pumps in the system, this stall limit is at the lowest possible level

when both pumps stall together. Under this condition, the pumps are said to be matched.

The lower boundaries of the operating envelope are the aluminum pressure tube tem-

perature and the topping turbine power limit. In this region insufficient energy exists in

the gas to drive the topping turbine.

In obtaining this operating envelope, a heat-exchanger bypass was used. If this by-

pass is not used, the lower boundary moves up to the boundary shown by the dotted line.

This line represents heat-exchanger icing.

Obviously the heat-exchanger bypass dramatically increases the size of the system

operating envelope. This increase in size is important because of the two basic opera-

tional requirements for the system.

First, the system must be capable of stable operation at the design point; and second,

it must be capable of performing satisfactorily during startup and shutdown. These re-

quirements denote that the system must go from low flow and power to the design point,

operate for a period of time, and then return to the low power and flow condition.

While the transient limits may be somewhat more lax than the steady-state limits

shown in this figure (fig. VIII-27), the size of the operating envelope indicates the ease

with which the limits can be avoided during startup, operation, and shutdown. For ex-

ample, in the description of the heat-exchanger problems, it was seen that a startup

without a bypass would probably result in some heat-exchanger ice formation. Using the

heat-exchanger bypass to eliminate this boundary, makes possible going from the startup

condition to the design point without encountering heat-exchanger icing.

Figure VIII-28 shows the open-loop power-flow relation during a typical startup tran-

sient using the heat-exchanger bypass. Power and flow are shown as a function of time.
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The transient starts from a motoring condition , that is, a condition where hydrogen

flow is produced 0nly by tank pressure. The hydrogen flow is then ramped to the 100-

percent design point just as in the startup discussed previously. The bypass is also

ramped to its 100-percent design value.

The total transient takes about 25 seconds. During the early part of the startup tran-

sient, the hydrogen flow increases more rapidly than the power; that is, the system re-

sponds quicker to a flow change. The area between the two curves represents overcooling

of the fuel elements due to an excess of hydrogen flow. Conversely, during shutdown a

fuel overtemperature could be expected since the power would tend to lag the flow. There-

fore, care must be exercised during a shutdown sequence to insure a reduction in reactor

power before flow is reduced to prevent fuel element overtemperature. This can be done

by increasing the poison concentration or the heat-exchanger bypass before the hydrogen

flow is decreased.

It appears then that the reference design is capable of starting up from a low power

condition with only the hydrogen flow and the heat-exchanger bypass being controlled. A

:--_:: shutdown, however, may require an initial poison insertion.

;: - The inherent stability of the reactor at the operating point was explained in paper VI;

however, if an adjustment in power were required, two modes of control are available.

The poison concentration in the tubes can be changed and the heat-exchanger bypass can

be varied. In the latter case, the core water temperature responds to bypass variation,

and the water temperature coefficient causes the core reactivity to vary.

Figures VlII-29 and 30 show some results of analog studies made to explore the basic

characteristics of each of these control methods. Figure VIII-29 shows the response of

the system to a step increase in poison concentration. Figure VIII-30 is the response to

a step change in heat-exchanger bypass flow. In both cases, no other control devices

: -- were manipulated after the initial perturbation. This open-loop response is not typical of

the response expected during normal reactor operation but is used in control studies to

obtain information that is useful to determine the behavior, stability, and requirements of

the control system.

If the two figures are examined carefully, the system response to the poison insertion

is seen to be entirely different from that of the perturbation in heat-exchanger bypass

flow. In the former, the initial reaction of the system to poison insertion is a sharp dip

in reactor power. This power reduction at constant hydrogen flow causes a decrease in

the fuel temperature, which has a negative temperature coefficient of reactivity.

The response of the fuel temperature change is practically instantaneous, and the

reactor power is increased sharply to a value that is below the initial power level. This

reduced power level causes the water temperature to start dropping slowly. Since the

water temperature coefficient is also negative, this increases power until a new steady-

state power level is reached.
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During this relatively slow portion of the powerrecovery, the reactor couldbeheld
at anydesiredpower level by stabilizing water temperature. For example, thehydrogen
flow rate couldbedecreased;however, in this particular studynosuchaction wastaken,
andthepower returnedto about98percent of the initial value. Thefuel andwater tem-
perature at the newsteady-stateconditionis slightly lower than theoriginal level to com-
pensatefor the increasedpoisonconcentration.

Figure VIII-29 also showsthat althoughthe inherenttendencyof the core to return to
designconditionsgives rise to initial oscillations theseare very quickly dampedout.

In contrast to this type of behavior, the characteristic of the systemusingthe hydro-
genbypassaroundthe heatexchangerfor control is slower andthe tendencyfor the sys-
tem to oscillate is eliminatedbecausetheprimary effect of a stepincrease in bypassflow
is a direct increase in water temperature that, in turn, affects the reactivity of the reac-

tor. Because of the relatively large mass of water in the system and the transport time

around the loop, this method of control is much slower than a corresponding insertion of

poison directly into the core region.

With two such widely different power level controls available, the design of a control

system to meet any specific control requirement would appear feasible.

In addition to the poison and bypass controls just discussed, the power can be changed

by changing the total hydrogen flow. This control method makes use of the negative tem-

perature coefficient of the fuel element. Figure VIII-3! shows the response of the system

to an increase in hydrogen flow with poison and bypass held constant. Shown, as before,

are power, exit gas temperature, and reactivity change as a function of time. The sharp

response is similar to a change in poison concentration; however, in this case, the

change in fuel plate temperature is caused by the increased hydrogen flow. The final

power rise, as in the other cases, still depends on how fast the water temperature changes.

In generating the steady-state performance map (fig. VIII-27), the poison concentra-

tion was fixed, and only the total hydrogen flow rate and bypass were varied to obtain the

complete operating envelope. Studies have shown that no other system parameters re-

quire control.

For example, during steady-state mapping, the bleed system flow was noted to be

choked in the vicinity of the water pump turbine. This condition existed over the entire

operating range. As a result, the relation between bleed flow and the flow required to

cool the bleed tubes remained nearly constant. Therefore, no control was required.

The water flow rate is another parameter that does not need to be controlled. Studies

have shown that by fixing the valves to obtain the desired water flow at the 100-percent

power level, heat-exchanger icing can be minimized and loop response time reduced at

any lower power level.

The work split between the two pumps does not require close control during normal

operation either. During the first few seconds of a startup, the first stage pump tends to
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carry the burden of the system load. The pumps are not matched under these conditions,

and the stall limit on the operating map would l_ecome more restrictive than when the

pumps are matched. Based on the results of the NERVA system (paper IV), however,

this may not be a serious problem since the pumps can apparently pass through the stall

region during startup.

In summary, the only controls required on the TWMR split feed system appear to be

those on the poison, the heat-exchanger bypass, and the total hydrogen flow rate.

It would not appear that the control problems of the all-topping system would be much

different from the split feed system. Basically, the same three control parameters would

also be required for an all-topping cycle. The all-topping cycle would have the advantage

of eliminating the bleed portion of the split feed system, and, although the control of the

bleed flow is not critical, this would simplify the overall system. Therefore, if the fluid

driving the topping turbine contains sufficient energy to provide all the power required by

the system, including auxiliary pumps, the all-topping cycle would be preferred to the

split feed system.

SYSTEM SIZE AND WEIGHT

In addition to the factors already noted, one measure of flight propulsion performance

is the size and weight of the system. Table VIII-2 shows a weight breakdown of the refer'

ence 1500-megawatt system. The weight of all shielding that might be required has been

omitted. The nozzle weight shown is for a 40:1 cooled nozzle. Engine thrust structures,

gimbals, and thrust vector system are not included in this weight breakdown.

The choice of the 1500-megawatt power level for the reference design was somewhat

arbitrary. As already discussed (paper Vl), a range of reactor sizes with the same gen-

eral configuration was investigated. Using the same system operating limits, chamber

pressure, fuel loading, etc., as were established for the reference design permits vary-

ing the power of the reactor by: increasing or decreasing the diameter of the core while

keeping the length the same. The size of other system components must also change to

accommodate the new flow rates.

The fine geometry fuel elements eliminate the allowable dynamic head limit of 12.5

pounds per square inch used in the reference design. Therefore, the power output of a

given reactor core size can be increased by increasing the flow and improving the heat

transfer. The limiting condition for this upgraded system would be the magnitude of the

pressure drop associated with the higher flow rate. A core pressure drop of 250 pounds

per square inch is felt to be a reasonable value at this time.

Figure VIII-32 shows thrust-weight ratios for various systems up to about 10 000

megawatts. The lower curve is for a system with the reference 12.6 pounds per square
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inch dynamic head limit. The design point is shown at 1500 megawatts. The upper curve

is for a case in which a reactor core pressure drop of 250 pounds per square inch was

imposed. The resulting power output of each fuel element for this case is approximately

1_ times that of the lower curve.
4

The reactivity limit for U235 fuel is reached for small size reactors. Using U 233

instead of U235 below this level allows the limiting power to be reduced until the reac-

tivity limit of the U 233 is finally reached. This is the smallest feasible size for reactors

using the reference parameters. The thrust-weight ratio varies from about 5 to 8.5

(lb/lb) for the cases shown.

Figure VHI-33 shows the pressure vessel diameter as a function of reactor power

level for these two cases. Again, the results for the 12.5 pound per square inch dynamic

head case and the 250 pound per square inch reactor core pressure drop case are shown,

along with the reactivity limits for U235 and U 233 fuel. The pressure vessel diameter

varies from 31 to 109 inches for the power range shown.

It should be emphasized that all the systems represented by figures VIII-32 and 33

were obtained by using the same parameters as in the reference design. These param-

eters are not necessarily the optimum combination for all reactor sizes and power levels.

For example, by changing such things as the chamber pressure, the fuel element size,

the fuel loading, or the percent of enriched tungsten, many other curves could be genera-

ted similar to those shown in these two figures.

The TWMR, therefore, is not limited to the range of sizes shown herein, but de-

pending on specific mission requirements, could be optimized at many other sizes and

power levels.

SUMMARY

Although some of the problems associated with the tungsten water-moderated reactor

(TWMR) appear formidable at firstglance, testingand analystshave shown thatthey can

generally be solved and thatthe system can be designed to accommodate the problem

areas. For example, using a hydrogen bypass around the heat exchanger virtuallyelimi-

nated the serious problems of icingduring startupand sensitivityto changes in operating

conditions.

The TWMR has three independentand quitedifferentmethods of control: the poison

controlsystem, the heat-exchanger bypass, and the totalhydrogen flow rate. Depending

on a specificcontrolrequirement, these can be used individuallyor in combination to ob-

tainthe desired system response. Analog simulation has demonstrated thatthe system

can be startedand shut down and thatitcan be controlledat the operating point.

The reference design is representativeof a family of systems thathave the same gen-
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eral characteristics. Reactors within the power range of from about 400 to over 10 000

megawatts can be achieved by merely changing the diameter of the core and modifying the

size of the auxiliary components. Slightly lower powers, down to about 250 megawatts,

can also be achieved by using U233 instead of U235 as a fuel. Higher power levels can be

obtained for a given size reactor by using fine geometry fuel elements to increase the

allowable dynamic head.

From a system and control viewpoint, the TWMR appears feasible over a wide range

of reactor sizes.

/
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TABLE VIII-1. - SYSTEM COMPARISON

[Chamber pressure, 600 psia; flow rate, 92.7 lb/sec.]

Upper chamber pressure limit, psia

Bleed rate, percent

Engine specific impulse, (lb)(sec)/lb

Hydrogen pump discharge pressure, psia

Hydrogen pump horsepower

Bleed Topping

None -- 700

5.1 0

819 839

945 1490

7200 11 700

TABLE VIII-2. - WEIGHT OF TUNGSTEN WATER-

MODERATED REACTOR SYSTEM

Component

Reactor components (no shield):

Uranium dioxide fuel

Tungsten

Water moderator

Reflectors

Structure and controls

Total weight of reactor components

Nonreactor components:

Nozzle (40:1)

Pumps

Piping

Fluids

Total weight of nonreactor components

Total weight of system

Weight,

lb

200

3000

1840

1330

2640

9010

1280

900

1600

950

4730

13 740
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